m Microsoft

The PostgreSQL Protocol:
The Good, the Bad and the Future

Jelte Fennema-Nio

Principal Software Engineer @ Microsoft
Maintainer of Citus & PgBouncer
Contributing to Postgres semi-regularly

@JelteF

2024-05-29

What do we consid
the protocol?

How your query gets to
Postgres

Not the letter but the envelope and delivery

Only used by
Postgres?

(3 UMBRA () CockroachDB
‘7 yugabyteDB

A HyPer

Q QuestDB
=l CrateDB

amazon
REDSHIFT

Nope!

And there are clients
and connection poolers

Many clients

’
’
[
1
i
4
¥

Well documented

What does it consist of?

« Protocol version 3.0
« TCP based protocol

- Messages
- 1 byte for type
- 4 bytes for length
- bytes for the rest of the message based on type field

Different phases/sub protocols

 Start-up

« Simple Query Protocol

- Extended Query Protocol
« COPY Protocol
 Logical Replication

« Physical Replication

« Query Cancelling

Different phases/sub protocols

 Start-up

« Simple Query Protocol

- Extended Query Protocol
« COPY Protocol
- Lo g®tion
« Phygi e jon
« Query Cancelling

Q.
-

Start

Start-up

- StartupMessage: One of the only four messages without a type
« Protocol version encoded in 4 bytes

« Key value pairs

« "user” only required key

- "database” and “replication” exist too

« (Can pass arbitrary GUCs

« Also “options” key can be used to set GUCs: “-c work_mem=128MB"
Supports any postgres process startup flag even -e (means Europe)
Or -d 5 (which enables lots of debug like debug_print_parse)

Encrypted Start-up

« SSLRequest or GSSENCRequest instead of Startup
« Magic version numbers 1234.5679 and 1234.5670
- Postgres answers yes/no

« Set up encryption

« Continue with Startup

Simple Query

Simple Query Protocol

1. -> Query("SELECT id, name FROM users”)
2. <- RowDescription(

num_fields=2,

“id", INT4OID, text/birary

“‘name”, TEXTOID, text/btrary
)
<- DataRow(“123""Han Solo")
<- DataRow(“456""Luke Skywalker")
<- ReadyForQuery('l') # means “idle”, can also be

#"T" ("In transaction”) or "E" ("error occurred”)

vk W

Extended Query Protocol

1. -> Parse("SELECT * FROM users WHERE id = $1)
2. -> Bind(params=[123], column_formats=[binary, text])
3. -> Describe()
4. -> Execute()
5. <- RowDescription(
num_fields=1,
“id”, INT40ID, text/binary
"‘name”, TEXTOID, text/birary
)
6. <- DataRow(123,"Han Solo")
7. <- ReadyForQuery('l)

Extended Query Protocol

« What almost every client driver uses

« Free SQL escaping for clients

« Used for protocol level prepared statements:
Parse("hard-to-plan-query”, “SELECT ... JOIN ... JOIN ... id = $1")
Bind("hard-to-plan-query”, 123)
Execute()
Bind("hard-to-plan-query”, 456)
Execute()

Query pipelining

Parse("INSERT VALUES users(name) VALUES ($1))
Bind("Padme”)

Execute()

Bind("Yoda")

Execute()

Bind(“Boba Fett")

Execute()

Sync

© NV AW =

Query pipelining failures

Parse("INSERT VALUES users(name) VALUES ($1))
Bind("Yoda")

Execute()

Bind("Yoda") # Unique conflict

Execute()

Bind(“Boba Fett")

Execute()

Sync

© NV AW =

Rolls everything back, and ignores commands until Sync

COPY protocol

COPY protocol (TO STDOUT)

-> Prepare("COPY TO STDOUT (select generate_series(10000))")
-> Bind()

-> Execute()

<- CopyOutResponse()

<- CopyData(“<bytes>")

<- CopyData(“<bytes>")

<- CopyDone()

-> Sync

O NPV A WD =

COPY protocol (FROM STDIN)

-> Prepare("COPY FROM STDIN")
-> Bind()

-> Execute()

. <- CopylnResponse()

. -> CopyData(”<bytes>")

. -> CopyData(”<bytes>")

-> CopyDone()

-> Sync

O NV A WD

COPY protocol (FROM STDIN)

« Weird thing: Postgres ignores Sync messages until CopyDone

Cancel protocol

Cancel requests

- BackendKeyData(pid, secret) is sent as response to StartupMessage
« CancelRequest(pid, secret) cancels any query

« Magic version number 1234.5678

« New connection needed

 Similar to StartupMessage, but connection is closed immediatly

How Postgres cancellation requests work

Client

Postgres Server

How Postgres cancellation requests work

Client

-> CONNECT

Postgres Server

How Postgres cancellation requests work

Client

-> CONNECT
<- You can send me

SECRET-TOKEN-123 to cancel
any queries on this connection

Postgres Server

How Postgres cancellation requests work

Client

-> CONNECT
<- You can send me

SECRET-TOKEN-123 to cancel
any queries on this connection

-> RUN:
DELETE FROM users;

Postgres Server

How Postgres cancellation requests work

Client

-> CONNECT
<- You can send me

SECRET-TOKEN-123 to cancel
any queries on this connection CANCEL SECRET-TOKEN-123

-> RUN:
DELETE FROM users;

Postgres Server

How Postgres cancellation requests work

Client

-> CONNECT
<- You can send me

SECRET-TOKEN-123 to cancel
any queries on this connection CANCEL SECRET-TOKEN-123

-> RUN:
DELETE FROM users;
<- CANCELLED QUERY

Postgres Server

So what happens with cancellations and a load balancer
Client

Load balancer

Postgres Server A Postgres Server B

So what happens with cancellations and a load balancer
Client

DELETE FROM users;

Load balancer

Postgres Server A Postgres Server B

So what happens with cancellations and a load balancer
Client

DELETE FROM users;

Load balancer
DELETE FROM users:;

Postgres Server A Postgres Server B

So what happens with cancellations and a load balancer
Client

DELETE FROM users; CANCEL SECRET-TOKEN-123

Load balancer
DELETE FROM users:;

Postgres Server A Postgres Server B

So what happens with cancellations and a load balancer
Client

DELETE FROM users; CANCEL SECRET-TOKEN-123

Load balancer
DELETE FROM users:;

CANCEL SECRET-TOKEN-123

Postgres Server A Postgres Server B

So what happens with cancellations and a load balancer
Client

DELETE FROM users; CANCEL SECRET-TOKEN-123

P Load balancer
DELETE FROY ’

This is probably a hacker.
Let’s ignore this request

\J

Postgres Server B

g\ =

Hard for transaction
pooling

An example prepared statements

Client »
Client /

An example prepared statements

Prepare:

Client 1 - seect

Postgres

>

Client /

An example prepared statements

Prepare:

Client 1 - seect

Postgres

>

Client /

An example prepared statements

' Prepare:
Client P
. P1 = SELECT [RASIEE

Client /

An example prepared statements

C1: P1 = SELECT

Client

Postgres

>

Client /

An example prepared statements

C1: P1 = SELECT

Client

Postgres

>

Client /

Prepare:
P1 = UPDATE

An example prepared statements

C1: P1 = SELECT

Client

Postgres

>

. / Prepare:
Client P1 = UPDATE

An example prepared statements

C1: P1 = SELECT

Client

Postgres

>

. / Prepare:
Client P1 = UPDATE

ERROR: P1 already exists

An example prepared statements

C1: P1 = SELECT

Client

Postgres

An example prepared statements

C1: P1 = SELECT

Client

Postgres

An example prepared statements

C1: P1 = SELECT

Client

Postgres

9

An example prepared statements

C1: P1 = SELECT

Client

Postgres

TPTPY

An example prepared statements

- |

An example prepared statements

Exec: P1

Client

Postgres

An example prepared statements

Exec: P1

Client

Postgres

An example prepared statements

Exec: P1

Client

Postgres

An example prepared statements

ERROR: P1 does not exist

Exec: P1

Client

Postgres

And then you need tricks like this

Client

Client /

And then you need tricks like this

Prepare:

Client »r1 - seect
Client _—

And then you need tricks like this

Prepare:

Client »r1 - seect
Client _—

And then you need tricks like this

C1: P1 = SELECT = SP1

Prepare:

Client »r1 - seect

Postgres

>

Client /

And then you need tricks like this

C1: P1 = SELECT = SP1

Client Prepare:
> SP1 = SELECT

Client /

Postgres

And then you need tricks like this

C1: P1 = SELECT = SP1 C1: SP1 = SELECT

Client

Postgres

>

Client /

And then you need tricks like this

C1: P1 = SELECT = SP1 C1: SP1 = SELECT

Client

Postgres

>

Client /

Prepare:
P1 = UPDATE

And then you need tricks like this

C1: P1 = SELECT = SP1 C1: SP1 = SELECT
C2: P1 = UPDATE = SP2

Client

Postgres

>

Client /

And then you need tricks like this

C1: P1 = SELECT = SP1 C1: SP1 = SELECT
C2: P1 = UPDATE = SP2

Client

Postgres

>

. / Prepare:
Client SP2 = UPDATE

And then you need tricks like this

C1: P1 = SELECT = SP1 C1: SP1 = SELECT
C2: P1 = UPDATE = SP2 C1: SP2 = UPDATE

Client

Postgres

>

. / Prepare:
Client SP2 = UPDATE

And then you need tricks like this

C1: P1 = SELECT = SP1 C1: SP1 = SELECT
C2: P1 = UPDATE = SP2 C1: SP2 = UPDATE

Client

Postgres

>

Client /

SUCCESS

And then you need tricks like this

C1: P1 = SELECT = SP1 C1: SP1 = SELECT
C1: SP2 = UPDATE

Client

Postgres

And then you need tricks like this

C1: P1 = SELECT = SP1 C1: SP1 = SELECT
C1: SP2 = UPDATE

Client

Postgres

And then you need tricks like this

C1: P1 = SELECT = SP1 C1: SP1 = SELECT
C1: SP2 = UPDATE

Client

Postgres

9

And then you need tricks like this

C1: P1 = SELECT = SP1 C1: SP1 = SELECT
C1: SP2 = UPDATE

Client

Postgres

TPTPY

And then you need tricks like this

C1: P1 = SELECT = SP1

- |

And then you need tricks like this

C1: P1 = SELECT = SP1
Exec: P1

Client

Postgres

And then you need tricks like this

C1: P1 = SELECT = SP1
Exec: P1

Client

Postgres

And then you need tricks like this

C1: P1 = SELECT = SP1
Exec: P1

Client Prepare:
> SP1 = SELECT

Postgres

And then you need tricks like this

C1: P1 = SELECT = SP1 > SP1 = SELECT

Exec: P1

Client

Postgres

And then you need tricks like this

C1: P1 = SELECT = SP1 > SP1 = SELECT

Exec: SP1

Client

Postgres

And then you need tricks like this

C1: P1 = SELECT = SP1 > SP1 = SELECT

SUCCESS

Client

Postgres

Old!

n
S
©
)
>

o

QV

.m
n
u
(@)
c
C

=
O
o

2

One change: NegotiateProtocolVersion

 Introduced 5 years ago

 Allows server to trigger protocol version downgrade

« Or advertise non-support for requested protocol extensions
 So far unused

« Active discussion ongoing how we should use it

A

_

C o

Direct TLS

Direct TLS

« One less round trip

« (Can use off-the-shelf TLS proxies
« sslnegotiation=direct

« Committed in PG17

Compression

Compression

« compression = |z4
« CompressedData()
« Compression might weaken encryption

'01001001110001000
s Yy v 010111001110001000
: 010010011101101000

1 01001001110001000

Automatic binary
encoding

Automatic binary encoding

 Binary encoding is usually faster

« Some text some binary

« Needs extra round trip to find out which
 binary_formats=INTOID, TIMESTAMPOID

Smaller rows

Reducing the size of DataRow

 Every cell for every row contains length

« Wasteful for fixed-length cells

« Number of columns is also reported for every row
- RowDescription can be used for these

« No official proposal yet

Or even more radical

« Mix between columnar and row based

« Helps with compression

« Relevant paper with Postgres POC:
https:.//www.vidb.org/pvidb/vol10/p1022-muehleisen.pdf

« Shows 4x-8x improvement

https://www.vldb.org/pvldb/vol10/p1022-muehleisen.pdf

/ Wm |
HHT |]
-
.O
=
oR
U ‘o
£ 3
()
Yo
£3
<L X

Automatic RowDescription

- RowDescription is usually the same for the same query

- Wasteful to request over and over for prepared statement
« Changes after DDL

« Causes errors when using connection poolers

« “SELECT * FROM table” is the worst

« Proposal: Notify the client know when this happens

« https://commitfest.postgresqgl.org/48/4518/

https://commitfest.postgresql.org/48/4518/

Configurable
GUC_REPORT

Configurable GUC_REPORT

- ParameterStatus reports changes to GUCs with GUC_REPORT
 Very useful for connection poolers

« Currently hardcoded list

- search_path by far most requested

Larger secret in BackendData

 Secret in BackendData is 32 bits
« Not a lot security wise
« Proxies/poolers encode metadata in secret

Meta:
ParameterSet

ParameterSet

- Changing protocol parameters after startup

« Critical for poolers
« Needs protocol message for security

What now?

What now?

Consensus on how to use NegotiateProtocolVersion
Consensus on if protocol parameter are GUCs or not

Get ParameterSet in

Get more protocol changes in

Add support for the protocol changes to popular poolers

vk wn =

Any questions?

	Title slides
	Slide 1: The PostgreSQL Protocol: The Good, the Bad and the Future

	Text layouts
	Slide 2: What do we consider the protocol?
	Slide 3: How your query gets to Postgres
	Slide 4: Only used by Postgres?
	Slide 5: Nope!
	Slide 6: And there are clients and connection poolers
	Slide 7: The Good
	Slide 8: Many clients
	Slide 9: Well documented
	Slide 10: What does it consist of?
	Slide 11: Different phases/sub protocols
	Slide 12: Different phases/sub protocols
	Slide 13: Start-up
	Slide 14: Start-up
	Slide 15: Encrypted Start-up
	Slide 16: Simple Query
	Slide 17: Simple Query Protocol
	Slide 18: Extended Query Protocol
	Slide 19: Extended Query Protocol
	Slide 20: Query pipelining
	Slide 21: Query pipelining failures
	Slide 22: COPY protocol
	Slide 23: COPY protocol (TO STDOUT)
	Slide 24: COPY protocol (FROM STDIN)
	Slide 25: COPY protocol (FROM STDIN)
	Slide 26: Cancel protocol
	Slide 27: Cancel requests
	Slide 28: How Postgres cancellation requests work
	Slide 29: How Postgres cancellation requests work
	Slide 30: How Postgres cancellation requests work
	Slide 31: How Postgres cancellation requests work
	Slide 32: How Postgres cancellation requests work
	Slide 33: How Postgres cancellation requests work
	Slide 34: So what happens with cancellations and a load balancer
	Slide 35: So what happens with cancellations and a load balancer
	Slide 36: So what happens with cancellations and a load balancer
	Slide 37: So what happens with cancellations and a load balancer
	Slide 38: So what happens with cancellations and a load balancer
	Slide 39: So what happens with cancellations and a load balancer
	Slide 40: The Bad
	Slide 41: Hard for transaction pooling
	Slide 42: An example prepared statements
	Slide 43: An example prepared statements
	Slide 44: An example prepared statements
	Slide 45: An example prepared statements
	Slide 46: An example prepared statements
	Slide 47: An example prepared statements
	Slide 48: An example prepared statements
	Slide 49: An example prepared statements
	Slide 50: An example prepared statements
	Slide 51: An example prepared statements
	Slide 52: An example prepared statements
	Slide 53: An example prepared statements
	Slide 54: An example prepared statements
	Slide 55: An example prepared statements
	Slide 56: An example prepared statements
	Slide 57: An example prepared statements
	Slide 58: An example prepared statements
	Slide 59: And then you need tricks like this
	Slide 60: And then you need tricks like this
	Slide 61: And then you need tricks like this
	Slide 62: And then you need tricks like this
	Slide 63: And then you need tricks like this
	Slide 64: And then you need tricks like this
	Slide 65: And then you need tricks like this
	Slide 66: And then you need tricks like this
	Slide 67: And then you need tricks like this
	Slide 68: And then you need tricks like this
	Slide 69: And then you need tricks like this
	Slide 70: And then you need tricks like this
	Slide 71: And then you need tricks like this
	Slide 72: And then you need tricks like this
	Slide 73: And then you need tricks like this
	Slide 74: And then you need tricks like this
	Slide 75: And then you need tricks like this
	Slide 76: And then you need tricks like this
	Slide 77: And then you need tricks like this
	Slide 78: And then you need tricks like this
	Slide 79: And then you need tricks like this
	Slide 80: And then you need tricks like this
	Slide 81: Old!
	Slide 82: One change: NegotiateProtocolVersion
	Slide 83: The Future
	Slide 84: Direct TLS
	Slide 85: Direct TLS
	Slide 86: Compression
	Slide 87: Compression
	Slide 88: Automatic binary encoding
	Slide 89: Automatic binary encoding
	Slide 90: Smaller rows
	Slide 91: Reducing the size of DataRow
	Slide 92: Or even more radical
	Slide 93: Automatic RowDescription
	Slide 94: Automatic RowDescription
	Slide 95: Configurable GUC_REPORT
	Slide 96: Configurable GUC_REPORT
	Slide 97: Larger secret in BackendData
	Slide 98: Larger secret in BackendData
	Slide 99: Meta: ParameterSet
	Slide 100: ParameterSet
	Slide 101: What now?
	Slide 102: What now?
	Slide 103: Any questions?

