Yandex © Cloud Uprerigh

Tricks from In-
databases

Andrey Borodin,
postgres contributor

Wﬁ}[&fﬁﬂ"wu EENT PTIESS



About me

Postgres and Greenplum Maintain WAL-G, SPQR,
contributor on behalf Odyssey and some other stuff
of Yandex Cloud



Whiica
y 5
P eod




Registers

Caches

Main Memory

Block Storage



Access latncy

RAM
L1, L2, L3

CPU Registers

SSD\NVMe

Working set size



Registers

Caches

Main Memory

Block Storage

©

Network Object Storage



Cache line Is very similar
to 8Kb page



Cache miss Syscall

Branch Lock aquisition
mispredaiction




Latency Numbers Every Programmer
Should Know 2020

u 1ns

u L1 cache reference: 1ns
HEE Branch mispredict: 3ns
EEEN L2 cache reference: 4ns
EamEmmn ™ Mutex lock/unlock: 17ns

EEEZZE 100ns =

N Main memory reference:

100ns

EEnmmmmnEn 1,000ns = 1pus

MM COmpress 1KB wth

Zippy: 2,000ns = 2us

Emmmmmmmam 10,000ns ~ 10us = =
EEEEEEEEER
ENEEEEEEEE

Send 2,000 bytes over
commodity network:
11ns

SSD random read:
16,000ns = 16us

Read 1,000,000 bytes
sequentially from

memory: 1,000ns = 1pus

Round trip in same

datacenter: 500,000ns =
HEEE 500ps

1,000,000ns = Ims = W

m Netherlands:

Read 1,000,000 bytes
sequentially from SSD:
19,000ns = 19us

Disk seek: 2,000,000ns
~ 2ms

Read 1,000,000 bytes
sequentially from disk:
474,000ns = 474us

Packet roundtrip CA to

150,000,000ns = 150ms



Latency Numbers Every Programmer
Should Know 2012

u 1ns

u L1 cache reference: 1ns
HEE Branch mispredict: 3ns
EEEE L2 cache reference: 4ns

B Main memory reference:

100ns

EEEmmmmEEE 1,000ns = 1us

B NNE COmMpress 1KB wth

Zippy: 2,000ns = 2us

BESSEEEEEE 10,000rs ~ 1045 = =
ENEEEEEEEN

Send 2,000 bytes over
commodity network:
707ns

@0 SSD random read:
16,000ns = 16us

HiN Read 1,000,000 bytes
sequentially from
memory: 19,000ns =
19us

semmmmmmmm Round trip in same
S EREEEmmEm datacenter: 500,000ns =
EEENEEEEEN 5

N ESEE® 1,000,000ns = 1ms = =
HEEEEEEERER

Read 1,000,000 bytes
sequentially from SSD:
311,000ns = 311us

Disk seek: 4,000,000ns
~ 4ms

Read 1,000,000 bytes
sequentially from disk:
2,000,000ns = 2ms

Packet roundtrip CA to
Netherlands:
150,000,000ns = 150ms



Latency Numbers Every Programmer
Should Know 2006

u 1ns

u L1 cache reference: 1ns
HEE Branch mispredict: 3ns
EEEE L2 cache reference: 4ns

e Emms WEE \vutex lock/unlock: 17ns

100ns = 1

a Main memory reference:

100ns

EEmEmnEnEE 1,000ns = 1pus

NN COompress 1KB wth

Zippy: 2,000ns = 2us

EEmmmmmmmm 10,000ns ~ 10ps = ®

i Send 2,000 bytes over
commodity network:
6,000ns = 6us

0 SSD random read:
17,000ns = 17us

WHNENESE - Read 1,000,000 bytes

sequentially from
memory: 75,000ns =
/5Us

semEmEmmmm Round trip in same
 EREREmERR datacenter: 500,000ns =
EEEEEEEEEN 5 ) |

o Read 1,000,000 bytes
sequentially from SSD:
1,000,000ns = 1ms

EEEEEEI Disk seek: 7,000,000ns

~ 7ms

EEEEEE Read 1,000,000 bytes

sequentially from disk:
6,000,000ns = 6ms

ENEEEE Packet roundtrip CA to

Netherlands:
150,000,000ns = 150ms




In-memory databases

Reales

\ ~ites ORACLE
& Ignlte TimesTen

LA B4

MANA
memSQL :




Just use unlogged tables

Joke from Postgres users

13



VWhat about microsecond
reads”? And writes?

Joke from In-Memory databases

14



Umbra: A Disk-Based System with In-Memory Performance

Thomas Neumann, Michael Freitag
Technische Universitat Minchen
{neumann,freitagm}@in.tum.de

ABSTRACT

The increases in main-memory sizes over the last decade have made
pure in-memory database systems feasible, and in-memory systems
offer unprecedented performance. However, DRAM is still rela-
tively expensive, and the growth of main-memory sizes has slowed
down. In contrast, the prices for SSDs have fallen substantially in
the last years, and their read bandwidth has increased to gigabytes
per second. This makes it attractive to combine a large in-memory
buffer with fast SSDs as storage devices, combining the excellent
performance for the in-memory working set with the scalability of
a disk-based system.

In this paper we present the Umbra system, an evolution of the
pure in-memory HyPer system towards a disk-based, or rather
SSD-based, system. We show that by introducing a novel low-
overhead buffer manager with variable-size pages we can achieve
comparable performance to an in-memory database system for
the cached working set, while handling accesses to uncached data
gracefully. We discuss the changes and techniques that were nec-
essary to handle the out-of-memory case gracefully and with low
overhead, offering insights into the design of a memory optimized
disk-based system.

ago, one could conceivably buy a commodity server with 1 TB of
memory for a reasonable price. Today, affordable main memory
sizes might have increased to 2 TB, but going beyond that dispro-
portionately increases the costs. As costs usually have to be kept
under control though, this has caused the growth of main memory
sizes in servers to subside in the recent years.

On the other hand, SSDs have achieved astonishing improve-
ments over the past years. A modern 2 TB M.2 SSD can read with
about 3.5 GB/s, while costing only $500. In comparison, 2 TB of
server DRAM costs about $20000, i.e. a factor of 40 more. By
placing multiple SSDs into one machine we can get excellent read
bandwidths at a fraction of the cost of a pure DRAM solution.
Because of this, Lomet argues that pure in-memory DBMSs are
uneconomical [15]. They offer the best possible performance, of
course, but they do not scale beyond a certain size and are far
too expensive for most use cases. Combining large main memory
buffers with fast SSDs, in contrast, is an attractive alternative as the
cost is much lower and performance can be nearly as good.

We wholeheartedly agree with this notion, and present our novel
Umbra system which simultaneously features the best of both
worlds: Genuine in-memory performance on the cached working
set, and transparent scaling beyond main memory where required.



lalization

Spec




HyPer

7

SQL compiled into
LLVM assembly

deep exploration/statistics SQL SQL
in high-level languages analytics transactions

R \Juiia/Pvthon l/ l p

HyPer: The Computational Database

S
8 linear

JIT compilation
framework

17



Just-in-time compilation
IS not the only option



Just-in-time compilation We can just be less
IS not the only option generic!



Clickhouse function

Takes arguments as columns and returns function result as column.

class IFunction

{

virtual ~IFunction() = default;
virtual ColumnPtr executelmpl(
const ColumnsWithTypeAndName & arguments,

const DataTypePtr & result type,
size t input_rows count) const = 0;

}
Specializations using templates for different types. Example sum, multiply

for different types combinations.

Specializations for constant columns. Example sum, multiply with constant
column.



#define ST_SORT pg_gsort

#define ST _ELEMENT _TYPE VOID
#define ST COMPARE RUNTIME POINTER
#define ST SCOPE

#define ST _DECLARE

#define ST _DEFINE

#include "lib/sort_template.h"



static 1nline 1nt
sort_1nt32_asc_cmp(1nt32% a, 1nt32% b)
{
if (xa < *b)
return -1;
if (%ka > *b)
return 1;
return 0;

}

#define ST SORT sort 1nt32 asc
#define ST ELEMENT TYPE 1nt32

#define ST_COMPARE sort _1nt32 _asc_cmp
#define ST _SCOPE

#define ST DECLARE

#define ST DEFINE

#include "lib/sort_template.h"



postgres=# CREATE TABLE arrays_to_sort AS
SELECT array_shuffle(a) arr

FROM
(SELECT ARRAY(SELECT generate_series(1, 1000000)) a),

generate_series(1, 10);

postgres=# SELECT (sort(arr))[1] FROM arrays_to_sort; —— original
Time: 990.199 ms
postgres=# SELECT (sort(arr))[1l] FROM arrays_to_sort; —— patched
Time: 696.156 ms



projects / postgresql.git / commit 337 git |

summary | shortlog | log | commit | commitdiff | tree commit v ] ? search: | re
(parent: 519e4c9) | patch

Specialize checkpointer sort functions.

author Thomas Munro <tmunro@postgresql.org>

Fri, 12 Mar 2021 10:56:02 +0000 (23:56 +1300)
committer Thomas Munro <tmunro@postgresql.org>

Fri, 12 Mar 2021 10:56:02 +0000 (23:56 +1300)
commit 1b88b8908e751271933¢c076234fad85cda251421
tree 1c915dc@3ca34d4e91c3bc88alleleb5e820b33e lree
parent 519e4c9ee21a6568791231f4843f1d8d60cb71536 commit | diff

Specialize checkpointer sort functions.

When sorting a potentially large number of dirty buffers, the

checkpointer can benefit from a faster sort routine. One reported

improvement on a large buffer pool system was 1.4s —> 0.6s.

Reviewed-by: Andres Freund <andres@anarazel.de>

Discussion: https://postgr.es/m/CA%2BhUKGI2-eaDgAum5bxhpMNhvuImRDZxB_Tow@n-gse%s2BHGAYig%s40mail.gmail. com

src/backend/storage/buffer/bufmgr.c  diflbloblblame | history

This is the main PostgreSQL git repository.



What if we specialize
typical PK B-trees?



while (high > low)
{
Of fsetNumber mid = low + ((high - low) / 2);
result = _bt_compare(rel, key, page, mid);
if (result >= cmpval)
low = mid + 1;
else
high = mid;



B-tree is actively developed
We have a lot of types, but:

int4 int3 UUID

ought to be enough



28

Prototype

— datum
+ datum
— result
+ result

index_getattr(itup, scankey->sk_attno, itupdesc, &isNull);
*((1nt32_tx) ((charx)itup + 8));

DatumGetInt32(FunctionCall2Coll(&scankey—>sk_func,
pg_cmp_sé64(datum, scankey—->sk_argument);



Benchmark

create extension bloom:

create unlogged table x(1i int4);
create index on x using xbtree (1i);
create index on x using xbtree (1i);
create index on x using xbtree (1i);
create index on x using xbtree (1i);
create unlogged table y(i int4);
create index on y using btree (1);
create index on y using btree (1);
create index on y using btree (1);
create index on y using btree (1);
\timing

<T K



Benchmark

postgres=# 1nsert
INSERT 0 1000000
Time: 3747.325 ms
postgres=# 1nsert
INSERT 0 1000000
Time: 5002.399 ms

into x select random()*x1000000000 from generate_series(1,1000000) ;

(00:03.747)
into y select random()*1000000000 from generate_series(1,1000000);

(00:05.002)



Buffer manager for
variable-size pages




Variable-size pages

Buffer Frames Pages
7 % 7 % 7 777  FTTTTTooT y Fom=mm-e- P ' Yy y Fom=mm=e- : e

size Class 0 ZAVAVA \OADA_1V7) i 64KiB ;i 64KiB i 64KiB || 64 KiB | 64 KiB ' 64KiB || 64 KiB | | 64 KiB
___________________ Y

Size Class 1 V//A % ////// . 128 KiB 128 KiB . 128 KiB 128 KiB
_______________________________________ Y

Size Class 2 ///// 256 KiB 256 KiB

Size Class 3 4 ¢+ sokB

7]  inactive buffer frame

active buffer frame

-----

inactive page (no physical memory mapping)

reserved virtual memory

active page (mapped to physical memory)

Avoids indirection (TOAST) MADV_DONTNEED instead of

at all costs

our eviction from shared buffers



1

|1LL

PO

ter sw

iNg




| 63 bit - 1 bit -

swizzled [ pointed 0 ]

| 57 bit 6 bit 1 bit -

unswizzled | PID Size class | 1 |
Only one pointer Unswizzled on eviction

to each page

B-tree have different
lock model



________________________________________________________________________________________

2 ) 3 w
5 /
[ N (_) ______________________________
| Storage
1 2 3 4 5 6 /




-
HTAB *SharedBufHash

typedef struct buftag

{
O0id spc0id;
O0id db0id;

RelFileNumber relNumber;

ForkNumber forkNum;
BlockNumber blockNum;

/13t
"ree Page
Page
Page
g
/H
cap Page

} BufferTag;

.

~




Prototype

diff --git a/src/include/access/itup.h b/src/include/access/itup.h
index 94885751e59..82169a7292c 100644

——- a/src/include/access/itup.h

+++ b/src/include/access/itup.h

em—

Afypedef structaindexTupleData

{
ItemPointerData t_tid; /* reference TID to heap tuple x/

+ uint32 RRIe;

/%
* t_info 1s laid out i1n the following fashion:




+
+1nt hitcount = 0;
+1nt misscount = O;

+

+Buffer

+ReleaseAndReadBufferWithCandidate(Buffer buffer,

+ Relation relation,

+ BlockNumber blockNum,

+ Buffer FENMEELERTY)
+1

- ForkNumber forkNum = MAIN_FORKNUM;

BufferDesc *bufHdr;

-+

—+

38



Simple benchmark

CREATE TABLE x AS SELECT random();
CREATE INDEX ON x(random);

CREATE INDEX ON x(random);

\timing
INSERT INTO Xx
SELECT random() FROM generate_series(1,%$2);



Relative performance vs working set
size (dev build)

1,25
1,1

1,05 o
1,1 o

0,95 S o ®

0,9
0 500000 1000000 1500000 2000000 2500000 3000000



Relative performance vs working set
size (release build on server)

1,4
1,3

1,2

1,1 O

0,9

0,8
0,00 500000,00 1000000,00 1500000,00 2000000,00 2500000,00 3000000,00



We want to speculatively reuse some of pre-comuted
indirection information

What this information could be? Where to store it? It's a bad idea
Buffer number? to store it on page.



Page layout and
cache friendliness



The VLDB Journal 11(3), 2002.

Data Page Layouts for Relational Databases
on Deep Memory Hierarchies

Anastassia Ailamaki David J. DeWitt Mark D. Hill
Carnegie Mellon University University of Wisconsin - Madison
natassa@ cmu.edu {dewitt, markhill }@cs.wisc .edu
Abstract

Relational database systems have traditionally optimized for 1/O performance and organized
records sequentially on disk pages using the N-ary Storage Model (NSM) (a.k.a., slotted pages).
Recent research, however, indicates that cache utilization and performance is becoming increas-
ingly important on modern platforms. In this paper, we first demonstrate that in-page data place-
ment is the key to high cache performance and that NSM exhibits low cache utilization on modern

platforms. Next, we propose a new data organization model called PAX (Partition Attributes



NSM PAGE PAX PAGE CACHE

PAGE HEADER IRHI 0962 PAGE HEADER | 0962|7658
jane |30 |RH2[7658] John |  |3859]5523
45 | RH3 | 3589] Jim| 20 | RH4

5523| Susan| 52 HEN
Jane | John | Jim | Susan |

FIGURE 3: Partition Attributes Across (PAX), and its cache behavior. PAX partitions records into minipages
within each page. As we scan R to read attribute age,values are much more efficiently mapped onto cache blocks,
and the cache space is now fully utilized.

block 1




*

R e —— T — +
x | PageHeaderData | 1linpl 1linp2 1inp3 |
¥ F—————— e+
* | 1inpN | |
* + + +
* | |
* | |
* | |
I S ———— e +
X | | tupleN |
* + + + +
x| . tuple3 tuple2 tuplel | "special space" |
* + + +
x/

Line pointers define order Tuples store actual data



BinSearch prefetch

while (high > low)
{

Of fsetNumber mid = low + ((high - low) / 2);
__builtin_prefetch(mid + ((high - mid) / 2));
__builtin_prefetch(low + ((mid - low) / 2));

result = _bt_compare(rel, key, page, mid);

if (result >= cmpval)
low = mid + 1:

else
high = mid;



/\

12

10

14

11

13

15




The Eytzinger layout

running time (s)

running time of 2 x 10° searches on # values

1-6 | | | | ! | ! | I
e branch-free binary search f
L4 «—  branch-free binary search with prefetching | p
. , i
1 o || = branchy Eytzinger 5 Iy 4
oo branch-free Eytzinger } p
. a
1O L1 cache size ; - -
L2 cache size ; o
0.8 | . : o -
L3 cache size ; pd A
. (m) . "
O. 6 - gt :i"i E |
0.4 o _
0.2 B -e _.:_:_‘ -
sl®in o= :
_aoa-aaeaeo@ @SR Tn 0 100 1 00g0Eo00RB00RE0EES :
0.0 i ' ' . | | | | |
50 53 26 »9 512 515 518 521 524 ~27 530



Layout strategies

In-order

Layout strategy Is
| destroyed with any
Eytzinger insertion\deletion

Van-Emde-Boas



pgbench -I -s 25 && pgbench -T 100

Prefetch OFF

Prefetch ON

baseline

Bt-order

Van-Emde-Boas

Eyzinger

1448.331199

1463.701527

1457.586039

1483.654 765

1486.585895

1480.169967

1464.834678

1460.323392

2,6%

at most



ptimistic
buffer locks




How It would work In Postgres

Check if page is Do scan on a page
exclusive locked,
remember LSN

Be prepared to unforseen
consequences of data
modification

This Is done to avoid locking page in shared mode

Check that page
IS not exclusively

locked and LSN
did not advance

Otherwise discard the result



Problems

During scan we pass
Datum to opclass
funcs

01

We still need a pin
on a page

02

ABA problem

03



Conclusion




Each idea can bring percents
of performance

All this iIdeas combined can make
Postgres installations cheaper, but
will not unlock new usage patterns

Maybe we have other blottlenecks
than Umbra

Let's keep
watching for
new ideas



Thanks!

Andrey Borodin,
Postgres contributor

] x4mmm@yandex-team.ru

ﬂ X4mmm




