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Cache line is very similar 
to 8Kb page



Cache miss Syscall

Branch 
misprediction

Lock aquisition
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Latency Numbers Every Programmer 
Should Know 2020
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Latency Numbers Every Programmer 
Should Know 2012
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Latency Numbers Every Programmer 
Should Know 2006



In-memory databases



Joke from Postgres users

Just use unlogged tables



Joke from In-Memory databases

What about microsecond 
reads? And writes?
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Specialization
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HyPer

SQL compiled into 
LLVM assembly



Just-in-time compilation
is not the only option
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We can just be less 
generic!

Just-in-time compilation
is not the only option



https://maksimkita.com/presentations/cpp_russia_2021/jit_in_clickhouse/index.html#31 20

Clickhouse function
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What if we specialize 
typical PK B-trees?
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B-tree is actively developed
We have a lot of types, but:

int4 int8 UUID

ought to be enough



Prototype
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Benchmark
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Benchmark
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Buffer manager for
variable-size pages
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Variable-size pages

Avoids indirection (TOAST) 
at all costs

MADV_DONTNEED instead of 
our eviction from shared buffers
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Pointer swizzling
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swizzled

63 bit 1 bit

pointed 0

unswizzled

57 bit 1 bit

PID 1Size class

6 bit

Only one pointer 
to each page

Unswizzled on eviction

› B-tree have different 
lock model
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B-tree
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Prototype
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Simple benchmark
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Relative performance vs working set 
size (release build on server)
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We want to speculatively reuse some of pre-comuted
indirection information

What this information could be? 
Buffer number?

Where to store it? It’s a bad idea 
to store it on page.
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Page layout and 
cache friendliness
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Line pointers define order Tuples store actual data
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BinSearch prefetch



https://arxiv.org/pdf/1509.05053.pdf 48
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The Eytzinger layout
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Layout strategies

Layout strategy is 
destroyed with any 
insertion\deletion

1. In-order
2. Van-Emde-Boas

3. Eytzinger



https://www.postgresql.org/message-id/flat/3B774C9E-01E8-46A7-9642-7830DC1108F1%40yandex-team.ru 51

pgbench -i -s 25 && pgbench -T 100

Prefetch OFF Prefetch ON

baseline 1448.331199 1486.585895

Bt-order 1463.701527 1480.169967

Van-Emde-Boas 1457.586089 1464.834678

Eyzinger 1483.654765 1460.323392

2,6%
at most
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Optimistic
buffer locks
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How it would work in Postgres

Check if page is 
exclusive locked, 
remember LSN

01

Do scan on a page

02

Be prepared to unforseen
consequences of data 
modification

Check that page 
is not exclusively 
locked and LSN 
did not advance 03

Otherwise discard the result

This is done to avoid locking page in shared mode
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Problems

During scan we pass 
Datum to opclass
funcs

01

We still need a pin
on a page

02

ABA problem

03
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Conclusion
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• Each idea can bring percents
of performance

• All this ideas combined can make 
Postgres installations cheaper, but 
will not unlock new usage patterns

• Maybe we have other blottlenecks
than Umbra

Let’s keep 
watching for 
new ideas 



Thanks! 

Andrey Borodin,
Postgres contributor
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