
Tricks from in-memory 
databases

Andrey Borodin,
postgres contributor



About me

Postgres and Greenplum 
contributor on behalf
of Yandex Cloud

Maintain WAL-G, SPQR,
Odyssey and some other stuff



3



4

Block Storage

Main Memory

Caches

Registers



5

CPU Registers

L1, L2, L3

RAM

SSD\NVMe

Ac
ce

ss
 la

tn
cy

Working set size



6

Network Object Storage

Block Storage

Main Memory

Caches

Registers



Cache line is very similar 
to 8Kb page



Cache miss Syscall

Branch 
misprediction

Lock aquisition



https://colin-scott.github.io/personal_website/research/interactive_latency.html 9

Latency Numbers Every Programmer 
Should Know 2020



https://colin-scott.github.io/personal_website/research/interactive_latency.html 10

Latency Numbers Every Programmer 
Should Know 2012



https://colin-scott.github.io/personal_website/research/interactive_latency.html 11

Latency Numbers Every Programmer 
Should Know 2006



In-memory databases



Joke from Postgres users

Just use unlogged tables



Joke from In-Memory databases

What about microsecond 
reads? And writes?



15



16

Specialization



17

HyPer

SQL compiled into 
LLVM assembly



Just-in-time compilation
is not the only option



19

We can just be less 
generic!

Just-in-time compilation
is not the only option



https://maksimkita.com/presentations/cpp_russia_2021/jit_in_clickhouse/index.html#31 20

Clickhouse function



21



22



23



24



What if we specialize 
typical PK B-trees?



26



27

B-tree is actively developed
We have a lot of types, but:

int4 int8 UUID

ought to be enough



Prototype
28



Benchmark
29



Benchmark
30



31

Buffer manager for
variable-size pages



32

Variable-size pages

Avoids indirection (TOAST) 
at all costs

MADV_DONTNEED instead of 
our eviction from shared buffers



33

Pointer swizzling



34

swizzled

63 bit 1 bit

pointed 0

unswizzled

57 bit 1 bit

PID 1Size class

6 bit

Only one pointer 
to each page

Unswizzled on eviction

› B-tree have different 
lock model



35

Main mamory

Storage
1 2 3 4 5 6 7

1

2 3

5 7



36

B-tree

Heap

HTAB *SharedBufHashPage

Page

Page

Page



37

Prototype



38



39

Simple benchmark



40

Relative performance vs working set 
size (dev build)
1,25

1,1

1,05

1,1

0,95

0,9
0 500000 1000000 1500000 2000000 2500000 3000000



41

Relative performance vs working set 
size (release build on server)
1,4

1,3

1,2

1,1

1

0,8
0,00 500000,00 1000000,00 1500000,00 2000000,00 2500000,00 3000000,00

0,9



42

We want to speculatively reuse some of pre-comuted
indirection information

What this information could be? 
Buffer number?

Where to store it? It’s a bad idea 
to store it on page.



43

Page layout and 
cache friendliness



44



45



46

Line pointers define order Tuples store actual data



47

BinSearch prefetch



https://arxiv.org/pdf/1509.05053.pdf 48

8 4 12 2 6 10 14 1 3 5 7 9 11 13 15

8

4 12

2 6 10 14

1 3 5 7 9 11 13 15



https://arxiv.org/pdf/1509.05053.pdf 49

The Eytzinger layout



50

Layout strategies

Layout strategy is 
destroyed with any 
insertion\deletion

1. In-order
2. Van-Emde-Boas

3. Eytzinger



https://www.postgresql.org/message-id/flat/3B774C9E-01E8-46A7-9642-7830DC1108F1%40yandex-team.ru 51

pgbench -i -s 25 && pgbench -T 100

Prefetch OFF Prefetch ON

baseline 1448.331199 1486.585895

Bt-order 1463.701527 1480.169967

Van-Emde-Boas 1457.586089 1464.834678

Eyzinger 1483.654765 1460.323392

2,6%
at most



52

Optimistic
buffer locks



53

How it would work in Postgres

Check if page is 
exclusive locked, 
remember LSN

01

Do scan on a page

02

Be prepared to unforseen
consequences of data 
modification

Check that page 
is not exclusively 
locked and LSN 
did not advance 03

Otherwise discard the result

This is done to avoid locking page in shared mode



54

Problems

During scan we pass 
Datum to opclass
funcs

01

We still need a pin
on a page

02

ABA problem

03



55

Conclusion



56

• Each idea can bring percents
of performance

• All this ideas combined can make 
Postgres installations cheaper, but 
will not unlock new usage patterns

• Maybe we have other blottlenecks
than Umbra

Let’s keep 
watching for 
new ideas 



Thanks! 

Andrey Borodin,
Postgres contributor

57

x4mmm@yandex-team.ru

x4mmm


