PGCONF.DEV / VANCOUVER / MAY 29, 2024

Collations from A to Z

Putting words in order
without losing your mind or your data

Jeff Davis

Jeremy Schneider

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
R > 9

aws
~—

PostgreSQL does not include its own
string comparison code. It calls external
libraries, which were installed & managed

separately.

The Backstory, Part 1

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The Open Group Base Specifications Issue 7, 2018 edition
IEEE Std 1003.1-2017 (Revision of IEEE Std 1003.1-2008)
Copyright © 2001-2018 IEEE and The Open Group

NAME

strcoll, strcoll_| - string comparison using collating information
SYNOPSIS

#include <string.h>

int strcoll(const char *xsl1, const char *s2);

[X] ® int strcoll_l(const char *sl, const char xs2,
locale_t locale); @&

DESCRIPTION

For strcoll(): [SX] > The functionality described on this reference page is aligned with the
ISO C standard. Any conflict between the requirements described here and the ISO C
standard is unintentional. This volume of POSIX.1-2017 defers to the ISO C standard. &

The Backstory, Part 2 - Six Years Ago

Widespread encounters:

« Queries giving incorrect results
data appears to be lost

 Inserting records with duplicate primary keys
unique constraints not enforced correctly

« Mysterious crashes
in one case during WAL replay, preventing a DB from doing crash recovery

Caused by changes in sort order

aws

2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
R > 9

23 Things | Completely
Got Wrong

about putting words in order
during 7 years working with Postgres

aWS 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved
\/‘7

INCORRB v

1. Putting words in order is simple

compare each character
from beginningtoend (memcmp)

aW% © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

Linguistic Collation is Complex

Contractions: two (or more) characters sort as if
they were a single base letter. In Table 4, CH acts
like a single letter sorted after C.

Expansions: a single character sorts as if it were a
sequence of two (or more) characters. In Table 4,
an CE ligature sorts as if it were the sequence of
O +E.

Backwards Accent: In row 1 of Table 5, the first
accent difference is on the o, so that is what
determines the order. In some French
dictionary ordering traditions, however,

it is the last accent difference that

determines the order, as shown in row 2.

Table 5. Backward Accent Ordering Table 4. Context Sensitivity

https://www.cybertec-postgresql.com/en/case-insensitive-pattern-matching-in-postgresql/

The difficult case of German soccer

The ICU documentation details why correct case-insensitive pattern matching is difficult. A good example

is the German letter “R”, which traditionally doesn’t have an upper-case equivalent. So with good German
collations (the collation from the GNU C library is not good in that respect), you will get a result like this:

SELECT upper('FuRball' COLLATE "de-DE-x-icu™);
upper

FUSSBALL
@1 row)

Now what would be the correct result for the following query in a case-insensitive collation?

SELECT '"FuBball' LIKE 'FUS%';

You could argue that it should be TRUE, because that’s what you'd get for upper (' FuBball') LIKE
'FUS%'. On the other hand,

SELECT lower('FUSSBALL' COLLATE "de-DE-x-icu");

lower
‘ Normal Accent Ordering | cote < coté < c@te < c@té | Contractions | H < Z, but —
- - CH>CZ fussball
‘ Backward Accent Ordering | cote < cote < cotg < cote (1 row)
Expansions | OE < CE < OF
httpS//WWW u niCOde.Org/re po rts/tr1 0/ Both H— < H7. but so you could just as well argue that the result should be FALSE. The ICU library goes with the second
F—> 4:7, solution for simplicity. Either solution would be difficult to implement in PostgreSQL, so we have given up

aws
~—

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserve:

INCORwer

2. The way computers and people put
words in order doesn’t change

Must be a mistake by maintainers of the external library?

aW% © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

“Correct” Ordering Does Change

French (2010)
https://unicode-org.atlassian.net/browse/CLDR-2905

Currently we have backwards secondary sorting on for French (and only for French).

However, there is a significant cost to this setting in terms of performance, and no real

advantage to users in terms of function.

e There is little reason to believe that the average, even well-educated, francophone is
aware or cares about these rules.

e They affect very, very few cases (cote, peche, etc).

¢ From all evidence, the original research behind the rules was based on a selection of

dictionaries where a different selection would have given a different answer.

The plan is to issue a PRI for this change.

wiki.postgresqgl.org/wiki/Collations w) =

To quote from Unicode Technical StandardGe':

"Over time, collation order will vary: there may be fixes needed as more information becomes
available about languages; there may be new government or industry standards for the language
that require changes; and finally, new characters added to the Unicode Standard will interleave
with the previously-defined ones. This means that collations must be carefully versioned."

Tibetan (2021)
https://unicode-org.atlassian.net/browse/CLDR-9895

0 Elie Roux July 8, 2021 at 12:28 AM

After a discussion with Peter, | realize | should add some context here (mostly duplicate from the
presentation Peter pointed to, just for reference):

- the rules have been developed and are documented on € GitHub - eroux/tibetan-collation: Collation
algorithm for Tibetan

- they follow peer-reviewed articles (cited in the git repo)

- they are tested against a lot of edge cases (there's a Python test script in the repo)

- they have been adopted by GLibC

- I'm the lead developer of the Buddhist Digital Resource Center (& Home - Buddhist Digital Resource
Center), author of this article about the Tibetan syllabic components: Algorithmic description of th
e decomposition and checking of a Classical Tibetan syllable and co-author of these articles on

Tibetan NLP : A Optimisation of the Largest Annotated Tibetan Corpus Combining Rule-based, Memor
y-based, and Deep-learning and https://aclanthology.org/2020.tlt-1.3.pdf

aws 9 Peter Edberg July 7, 2021 at 10:35 AM

N7 Also see this preso about various Tibetan issues/proposals for CLDR & ICU: Tibetan in CLDR & ICU

Swedish (2022)
https://unicode-org.atlassian.net/browse/CLDR-3059

Projects / #% CLDR / [J CLDR-3059

Hs) Henri Sivonen May 2, 2022 at 12:35 AM

This issue bundles things that can be addressed separately from each other. |
file @ CLDR-15603: Align Swedish (sv) collation naming with other (non-zh) |
anguages DONE about the Swedish collation renaming.

O CLDR-7088: Swedish collation ACCEPTED also mentions the renaming but

focuses on w and v but in the opposite way compared to this issue.

Hs) Henri Sivonen May 1, 2022 at 11:56 PM

What's the evidence that users expect or want v and w to match in search?

As two completely unscientific (N=1 for Finnish, and N=1 for Swedish)
anecdotes: | had lived as a Finnish native-speaker in Finland for about 39 years
(and more than half of that having been interested in things of this nature)
before | learned, by reading CLDR sources, about the notion of v and w having
been formerly primary-equal in a Finnish standard. After learning, again by
reading CLDR sources, that CLDR also matches v and w for Swedish search, |
asked the first Swede who | could ask about whether they expected this, and 8
they didn’t expect this, either.

It's so interesting, first human languages were leading
& & changes on computers. We added rules to computers

reflecting how we speak or write.

Now - like in the French example - the rule was decided
the way computing is done.

The order of things can change. Now computers are

impacting our natural language.
Giilcin Yildirim Jelinek

Paraphrasing Peter Eisentraut during an interview with him

The Builders: A Postgres Podcast, Episode 1, Dec 12 2023

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
\/‘7

INCOR v

3. Changing sort order is rare

aWs, © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

Rare Large Change Got Everyone’s Attention

aws
~—

> C 25 postgresql.verite.pro/blog/2018/08/27/glibc-upgrade.html g)

PostgreSQL Notes - Daniel Veérité About

Beware of your next glibc upgrade

Aug 27, 2018

GNU libc 2.28, released on August 1, 2018, has among its new features a major update of its Unicode
locale data with new collation information.

From the announcement:

The localization data for ISO 14651 is updated to match the 2016 Edition 4 release of the standard, this
matches data provided by Unicode 9.0.0. This update introduces significant improvements to the
collation of Unicode characters. [...] With the update many locales have been updated to take
advantage of the new collation information. The new collation information has increased the size of the
compiled locale archive or binary locales.

For Postgres databases using language and region-sensitive collations, which tend to be the default
nowadays, it means that certain strings might sort differently after this upgrade. A critical consequence
is that indexes that depend on such collations must be rebuilt immediately after the upgrade. Servers
in WAL-based/streaming replication setups should also be upgraded together since a standby must run
the same libc/locales as its primary.

The risk otherwise is index corruption issues, as mentioned for instance in these two threads from

nacal-acaeneral: “leciiae with aerman locale on CentOSRS 5 A 7” and “The danaere nf etreamina acroce

2018

11

Rare Large Change Got Everyone’s Attention

DANGER: glibc 2.28 has a scary and major collation change

Even pure ASCII strings change sort order!

« Debian 10 (buster)

« Ubuntu 18.04

« RHEL 8

« SLE15 Service Pack 3

https://wiki.postgresql.org/wiki/Locale_data_changes

aW% © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. 12

Collation Torture

Data to answer the questions:

Is this really a problem?
How common are sort order changes?

« 10 years of historical versions
- Ubuntu and RHEL

-« All assigned code points

adWs

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
R > 9

Search or jump to...

github.com/ardentperf/glibc-unicode-sorting

Pull requests Issues Codespaces Marketplace Explore

& ardentperf [glibc-unicode-sorting Public & Pin @uUnwatch 3 -~ % Fork 2~ f¢ Star 12~
<> Code (© Issues 1 19 Pullrequests (® Actions [Projects [0 wiki) Security |~ Insights 3 Settings
% main ~ ¥ 1branch © 0tags Go to file Add file ~ SN About b
No description, website, or topics
f ardentperf results of ICU tests, updated comments in ICU scripts ef8908c on Mar 25 @ 36 commits provided.
W _rhel Generalize scripts and add RHEL support, add two new string patter... 2 years ago 07 Readme
_ A~ Activity
[_ubuntu-icu results of ICU tests, updated comments in ICU scripts 3 months ago
W 12 stars
n _ubuntu cosmetic updates: summary locale column before detail; add link to f... 8 months ago ® 3 watching
3 .gitignore further significant updates: split diff to separate script, use git d... 9 months ago % 2 forks
[README.md results of ICU tests, updated comments in ICU scripts 3 months ago
Y diff.sh add ubuntu-icu and bump up unicode version 3 months ago Releases
[filter.sh add a script that can filter to only the pure ISO-8859-1 strings, as ... 8 months ago No releases published
Create a new release
¥ run-icu.sh results of ICU tests, updated comments in ICU scripts 3 months ago
Y runsh bugfix: heart emoji in source code mistakenly included U+FEOF varia... 9 months ago
Packages
3 table.sh add ubuntu-icu, support MacOS (stat utility args), bump up unicode ... 3 months ago
No packages published
[§ test-host-icu.sh results of ICU tests, updated comments in ICU scripts 3 months ago Publish your first package
9 test-host.sh few comment updates; use larger instances, search deprecated AMIs 8 months ago
Languages
:= README.md Vi
Shell 100.0%
Collation Changes Across Linux Versions
Methodology
GNU C Library
There are two aspects to this analysis: comparing the results of actual sorts in en_US locale, and comparing the
1O ONLLATE +i, f tha O i Syuct. lacala data filac
13

286,654

unicode code points

[[B unicode - The World Standarc X + v
< C' @& home.unicode.org d % 0O =
UNICODE =
] =} - a 5
U+2B1B U+1F602 U+058A U+05D1 U+FF9F U+09A0
14
o y %] [1) 0
U+06A1 U+30EA URI'R35H U+FF62 U+2B06 U+03CC
Everyone in the world TN
should be able to use their 'y
own language on phones ?@i iif
and computers.
© LEARN MORE ABOUT UNICODE
- R
U+0CA5 U+2033 U+178A uU+0642 U+0669 U+0FOF
a ~ J T < b
U+04B9 U+301C U+207E U+FF34 U+141B U+30C4

_/7

SS199

S-200:
S-201:
S-202:
S-203:
S-204:
S-205:
S-206:
S-210:
S-211:
S-212:
S$-213:
S-214:
S-215:
S-216:
S-299:

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

B
®0
23

b4
\ 4,
B
(0.4
3e

e
7 L

S-300:
S-301:
S-302:
S-303:
S-304:
S-305:
S-306:
S-310:
S-311:
S-312:
S-313:
S-314:
S-315:
S-316:
S-320:
S-321:
S$-322:
S-323:
S-324:
S-325:
S-326:

*BB
00
Y33

Rk
]
B*B
0%0
£ e

3453
737
BB®
00®
339

ik e
7.2

91

LA d:
v %0
vw3
v,

vwe

v Ok
v/
*BY
v0®
v3w
v.®
v @
ik
v e

: Bew
t Qvw

SRR NP

:$§Y§

Hew

: 3B®

string patterns

S-400:
S-401:
S-402:
S-403:
S-404:
S-405:
S-406:
S-410:
S-411:
S-412:
S-413:
S-414:
S-415:
S-416:
S-420:
S-421:
S-422:
S-423: ..
S-424:
S-425:
S-426:
S-480:
S-481:
S-499:

S-580:
S-581:
S-582:
S-583:
S-584:
S-585:
S-599:

¢ $BB
¢ <*00
29233
vw, .,

v o
Y
B *B
0% *0
3ve3
.29,
ve
e o
veey
BB® ¢
Qe @®
33v @

ve
b 4 4
ik @
g ew
3B*B
3B-¢

BB® ® [tab]
[tab]BB® ®
BB-% ®

(TFD 4
¢9.33
3B-9*B

26 million

strings

CodePoint

001c97
001c97
001c97
001c97
001c97
001c97
001c97
001c97
001c97
001c97
001c97
001c97
001c97
001c97
001c97
001c97
001c97
001c97
001c97
001c97
001c97
001c97
001c97
001c98
001c98
001c98
001c98
001c98
001c98
001c98
001c98
001c98
001c98
001c98
001c98

1C90
1C90
1C90
1C90
1C90
1C90
1C90
1C90
1C90
1C90
1C90
1C90
1C90
1C90
1C90
1C90
1C90
1C90
1C90
1C90
1C90
1C90
1C90
1C90
1C90
1C90
1C90
1C90
1C90
1C90
1C90
1C90
1C90
1C90
1C90

UnicodeBlock PatternID String PositionChange

S-406
S-410
S-411
S-412
S$-413
S-414
S$-415
S-416
S-420
S-421
S-422
S-423
S-424
S-425
S-426
S-480
S-481
S-499
S-582
S-583
S-584
S-585
S$-599
S$-199
S-200
S-201
$-202
S$-203
S-204
5$-205
5-206
S-210
S$-211
S-212
S-213

007 Y -11431135,46+11444795,87:-199419
BooB -8465481,9+8479910,13:-8959176, 19¢
Ooo0 -10240551,9+10255120,13:-10734678
3003 -5845196,9+5857750,13:-6339374, 19¢
00. —2375649,9+2377580,13:-2869104, 19¢
oo -1134663,190+1137631,6:-641130, 9+
Fkootk -15846114,9+15875242,13:-1691821
Jon’ -12305289,9+12331858,13:-1337769
BBon -7358088,9+7373833,13:-7851695, 19¢
00on -9684114,263+9699303,357:-9931353
3300 -4133299,263+4146219,357:-4380496
..00 -1780032,263+1781363,357:-2026823

oo —-292833,98+294569,6:-46002,263+47¢
FkFkoo -16135223,263+16166487,357:-1638
Vo0 -12417471,263+12445940,357:-1266
3BoB -5284151,263+5297298,357:-5530914
3B-o -4711898,263+4725055,357:-4958661
onoo -11431135,46+11444795,87:-1994199¢
BB-om -7035764,134+7050593,181:-715914]
@ coe™ -3707164,134+3713766,181:-3830]
om.33 -11431135,46+11444795,87:-1994194
3B-oB -4711898,263+4725055,357:-495866]
onoon -11431135,46+11444795,87:-1994194
o —-11431258,46+11444959,87:-19941990, 15
oB -11431258,46+11444959,87:-19941990,]
00 -11431258,46+11444959,87:-19941990,]
03 -11431258,46+11444959,87:-19941990,]
0. —-11431258,46+11444959,87:-19941990,]
o -11431258,46+11444959,87:-19941990,]
ofk -11431258,46+11444959,87:-19941990,
0% -11431258,46+11444959,87:-19941990,
Bo -8465493,9+8479926,13:-8959176, 190+§
0o -10240563,9+10255136,13:-10734678, 14
30 -5845208,9+5857766,13:-6339374,190+¢
.0 —-2375661,9+2377596,13:-2869104, 190+

Every single RHEL major and Ubuntu LTS
in the last 10 years has sort order changes

except for Ubuntu 14.04

aW% © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

Collation Torture Test

< C 2% github.com/ardentperf/glibc-unicode-sorting/blob/main/run-icu.sh#L65

Introduction

The Problem
One Level Deeper

ol ¥ main v glibc-unicode-sorting / run-icu.sh

Problem Summary

Code | Blame 216 lines (194 loc) - 11.5 KB Collation Torture Test - on RHEL 7

ee+ 65 sudo su - postgres -c "psql -v ON_ERROR_STOP=on" <<EOF
66 CREATE TABLE unsorted_table(strings text);
67 \\timing \copy unsorted_table from /home/ec2-user/formated-unicode.txt (format csv)
68 VACUUM FREEZE ANALYZE unsorted_table;
69 drop table if exists unicode_spec; \timing
70 create table unicode_spec(fl text,f2 text,f3 text); WITH t AS (SELECT strings FROM unsorted_table ORDER BY strings)
7 SELECT md5(string_agg(t.strings,NULL)) FROM t;
72 copy unicode_spec from program 'curl -ks https://www.unicq _Tds —
73 7Tb2be833bc1893742f4b16d76d17e130
74 drop table if exists unicode_data; (1 row)
75 create table unicode_data(dl text);
76 Time: 176505.256 ms (02:56.505)
77 create or replace function insert_codepoint(cp int) returt See: https://github.com/ardentperf/glibc-unicode-sorting
78 begin And: https://joeconway.com/presentations/formated-unicode.txt
79 insert into unicode_data values(chr(cp)); -- 199 aWws
80
81 insert into unicode_data values(chr(cp)||'B');
82 insert into unicode_data values(chr(cp)||'0"); Joe Conway e
83 insert into unicode_data values(chr(cp)|]|'3'); —— 202
84 insert into unicode data values(chr(cp)ll'."'): — 203

aws

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. 16
R > 9

INCORRB v

4. Changing sort order is intentional

aWs, © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

Unintentional Changes

In 2014, a 300-line commit
to refactor an internal
cache for perf reasons
changed sort order of
22,000 code points
(mostly CJK) in the
collation torture test
between glibc versions
2.19 and 2.21

aws
~—

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

< C °s sourceware.org/git/?p=glibc.git;a=commit;h=0742a... ¢) = :
git:/sourceware.org / glibc.git / commit 337 git

summary | shortlog | log | commit | commitdiff | tree ? search:] (re

(parent: ee54ce4) | patch

strcoll: improve performance by removing the cache (#15884)

author Leonhard Holz <leonhard.holz@web.de>

Fri, 17 Oct 2014 10:17:23 +0000 (15:47 +0530)
committer Siddhesh Poyarekar <siddhesh@redhat.com>

Fri, 17 Oct 2014 10:17:23 +0000 (15:47 +0530)
commit 0742aef6e52a935f9ccd69594831b56d807feef3
tree ad38b0391baea7c79db50el1f9bbc31c50e0e5b88 tree
parent ee54ced4cb734f18fecd4fbcecdfbe997d2574321e commit | diff

strcoll: improve performance by removing the cache (#15884)

this is a path that should solve bug 15884. It complains about the performance
of strcoll(). It was found out that the runtime of strcoll() is actually bound
to strlen which is needed for calculating the size of a cache that was
installed to improve the comparison performance.

The idea for this patch was that the cache is only useful in rare cases
(strings of same length and same first-level-chars) and that it would be
better to avoid memory allocation at all. To prove this I wrote a performance
test bench-strcoll.c with test data in benchtests-strcoll.tar.gz. Also
modifications in benchtests/Makefile and localedata/Makefile are necessary to
make it work.

After removing the cache the strcoll method showed the predicted behavior
(getting slightly faster) in all but the test case for hindi word sorting.
This was due the hindi text having much more equal words than the other ones.

For equal strings the performance was worse since all comparison levels were 18
riin_throiaoh and from the cacand level an the cache imnroved the coamnarican

INCOR v

5. Indexes are the only thing corrupted

Users are safe if they rebuild indexes

aW% © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

Possible Corruption After Sort Order Change

https://ardentperf.com/2023/03/26/did-postgres-lose-my-data/

create table arabic dictionary research (
word text,

crossreferences text,

notes text

) partition by range (word);

create table arabic dictionary research pl partition of arabic dictilonary research

for values from ('I'"'") to ('g");

create table arabic dictionary research p2 partition of arabic dictilionary research
for values from ('g') to ('w');

create table arabic dictionary research p3 partition of arabic dictilonary research
for values from ('w') to ('J'");

create table arabic dictionary research p4 partition of arabic dictilonary research
for values from ('J') to ('.'");

create table arabic dictionary research pb5 partition of arabic dictilonary research
default;

dWs

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
R > 9

Possible Corruption After Sort Order Change

Updating an external collation library Can be corrupted by version change:
can cause corruption that isn’'t noticed

« Indexes
until long afterwards.

« All types, not just btree

Constraints

« All types, not just unique/primary-key
Can trigger a sort order change:

» 05 Upgrade FDWs - eg. mergejoin depends on same
+ Failover and Hot Standby local/remote ordering

« Patroni, Kubernetes, etc

Partitions

Maybe: un-refreshed materialized views,

» Distributed Systems triggers, generated columns? (I’'m not sure)

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
R > 9

INCORwer

6. Users can rebuild the impacted objects

It's inconvenient but at least there is always a “fix"

aW% © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

Hot Standby to Scale Out Reads

aws
N

< C °s postgresql.org/message-id/flat/BA6132ED-1F... Yx D -
From: Matthew Kelly <mkelly(at)tripadvisor(dot)com>

To: "pgsql-general(at)postgresql(dot)org" <pgsql-general(at)postgresql(dot)org>

Cc: Matthew Spilich <mspilich(at)tripadvisor(dot)com>

Subject: The dangers of streaming across versions of glibc: A cautionary tale

Date: 2014-08-06 21:24:17

Message- g i

D BA6132ED-1F6B-4A0B-AC22-81278F5AB81E@tripadvisor.com

Views: Raw Message | Whole Thread | Download mbox | Resend email

Lists: pgsql-general

The following is a real critical problem that we ran into here at TripAdvisor, but have yet
figured out a clear way to mitigate.

TL;DR:

Streaming replicas—and by extension, base backups—can become dangerously broken when the
source and target machines run slightly different versions of glibc. Particularly,
differences in strcoll and strcoll_1l leave "corrupt" indexes on the slave. These indexes are
sorted out of order with respect to the strcoll running on the slave. Because postgres is
unaware of the discrepancy is uses these "corrupt" indexes to perform merge joins; merges
rely heavily on the assumption that the indexes are sorted and this causes all the results of
the join past the first poison pill entry to not be returned. Additionally, if the slave
becomes master, the "corrupt" indexes will in cases be unable to enforce uniqueness, but
quietly allow duplicate values.

Context:

We were doing a hardware upgrade on a large internal machine a couple months ago. We
followed a common procedure here: stand up a the new HA pair as streaming replica's of the
old system; then failover to the new pair. All systems involved were running 9.1.9 (though
that is not relevant as we'll see), and built from source.

Immediately, after the failover we saw some weird cases with some small indexes. We thought
it was because the streamina replication failover had gone poorly (and because we weren't

2014

23

7. My database doesn’t have any

characters from that uncommon language
with a sort order change

| can safely update the collation library and ignore
warnings about corruption

aW% © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

Assume Unexpected Characters

' ooeu:eooooa

QIWIELRITIYJUL I P
Bananas D GHED DD DD D D B N R B
i Als|plFleiH|J|Kk]|L
otatoes
§ Juice
J Milk 4 Z X|ICIVIBINIMIE=
Eggs : e y
3 Bread 0 t
i Keyboard Settings... 7123 © i TR 7 Sl
English (UK)
BB Ao 2- ® ‘ HHRFE
RS VA I X s = Mok = S o ijyeye
- = o n K e H I uw 3 :
PeOSORKNCT e < s hpipkp!
VRVOB /S, QS dlilslalnlplolnlalx
SN2 ¢¥d R —=—== LEFR b n m &
« : ; P F ¢ B AujcimMinlTib|6|108 R P —
A Bdn 8 = ~
& 9

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
R > 9

INCORBw-

8. My database understands all of the
characters that are in it

aW% © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

Device and App Updates

New versions of Unicode are deployed
quickly to devices and end users

Generally less than a year

A database that rejects unknown code
points will not store data entered on

current phones & apps, if the data
includes new characters

Patches are on the mailing lists, still
under discussion

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
R > 9

2% blog.emojipedia.org/whats-new-in-unicode-15-0/

UN

UNICODE

2 4 £

Google

€«
Oy

September 2022
% Final version of Emoji
15.0 Released

Approved by the Unicode Consortium,
alongside Unicode 15.0.

* Platform support dates are estimates based on 2021 - 2022. Proposed new emoji designs are Emojipedia Sample Images. Actual designs will vary on each platform.

Oct - Dec 2022

"% Earliest support for
Emoiji 15.0

Likely first supported on Google and Android
platforms, given recent improvements to
emoji support rollout.*

Jan - Oct 2023

Majority of platforms to
support Emoji 15.0

Likely to include Apple, Samsung,
Twitter, Facebook.*

27

INCORwer

9. The Postgres warning message about
“wrong collation library version” will be
displayed to someone

aW% © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

® DBeaver 23.0.0 - <research_texts_hotstandby> Console

saL i B : €D Auto :) research_texts_hotstandby public@research_texts : ®
w D
Database Navigator X — B &g <research_texts> Console B <research_texts_hotstandby> Console X (|
M
C i
> Qresearch_texts - 54.2 7 EI' select count(x) from arabic_dictionary_research where word between '1&' and '9S8';

v @@ research_texts_hotstandby
v [Databases
v research_texts

select count(x) from arabic_dictionary_research where word between '1;' and '9;';

v @ Schemas
% public
v [Tables o
> = arabic_dictionary_research
> @@ Views E
> @ Materialized Views r
M Project - General X ° = 0 ;
Name |DataS =
> B Bookmarks &= Results 1 &= Results1(2) X
> @@ Diagrams | Data filter is not supported > |) @
> [Scripts 3
. o a count =" Value X | |
S 1 0 e
=)
@
)
%
2
Refresh i Export data : 3¢ 200
© 1: 1 row(s) fetched :
(@] wman

PST en_US Writable Smart Insert BEPE163]}:

“Warning"” May Appear in Server Logs Only

https://ardentperf.com/2023/03/26/did-postgres-lose-my-data/

And while no messages were ever actively displayed to either the admin who created the hot standby or the researcher who was running
SQL in DBeaver, there was a warning message buried in the database log on the hot standby server:

ubuntu@ip-10-0-0-117:~$ tail /var/log/postgresql/postgresgl-15-main.log

2023-03-26 07:39:47.656 UTC [5053]

LOG: restartpoint complete: wrote 71 buffers (0.4%); 0 WAL file(s) added, 0 removed, 0 recycled; write=7.026

s, sync=0.004 s, total=7.039 s; sync files=51, longest=0.003 s, average=0.001 s; distance=266 kB, estimate=14772 kB

2023-03-26 07:39:47.656 UTC [5053
2023-03-26 07:39:47.656 UTC [5053
2023-03-26 07:44:55.770 UTC [5053
2023-03-26 07:45:09.811 UTC [5053]
write=14.031 s, sync=0.003 s, total=1
2023-03-26 07:45:09.811 UTC [5053]
2023-03-26 07:45:09.811 UTC [5053]
2023-03-26 09:20:06.353 UTC [5498;

LOG: recovery restart point at 0/3042B20

DETAIL: Last completed transaction was at log time 2023-03-26 07:36:32.138932+00.

LOG: restartpoint starting: time

LOG: restartpoint complete: wrote 141 buffers (0.9%); 0 WAL file(s) added, O removed, 0 recycled;
4.042 s; sync files=22, longest=0.002 s, average=0.001 s; distance=1309 kB, estimate=13425 kB
LOG: recovery restart pomt at 0/3189F90

DETAIL: Last complete ransactio

2023-03-26 09:20:06.353 UTC [5498
system provides version 153.112.

2023-03-26 09:20:06.353 UTC [5498] ubuntu@research_texts HINT: Rebuild all objects in this database that use the default collation and run
ALTER DATABASE research_texts REFRESH COLLATION VERSION, or build PostgreSQL with the right library version.

Collation.

aWS, © 2024, Amazon Web Services, Inc. or its affiliates. All

rights reserved.

INCOR v

10. Postgres can always know what version
of C Libraries are installed on the OS

aW% © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

Postgres Detects Version On Common OS's

& C °s postgresql.org/docs/16/sql-altercollation.htmI#SQL-ALTERCOLLATION-NOT... Y) -

When using collations provided by libc, version information is recorded on systems using the GNU C
library (most Linux systems), FreeBSD and Windows. When using collations provided by ICU, the version
information is provided by the ICU library and is available on all platforms.

Note

When using the GNU C library for collations, the C library's version is used as a proxy for
the collation version. Many Linux distributions change collation definitions only when
upgrading the C library, but this approach is imperfect as maintainers are free to back-
port newer collation definitions to older C library releases.

When using Windows for collations, version information is only available for collations
defined with BCP 47 language tags such as en-US.

aws

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
R > g

INCORR
11. You can't just REL |

“extract the collation code from an old
glibc (GNU C Library) version,

build it as an independent library,
and install it on a new major OS release”

aW% © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

C 25 github.com/awslabs/compat-collation-for-glibc/ S)

Contributors 3

README Code of conduct License Security

Overview % sharmay Yogesh Sharma

, jconway Joe Conway
glibc is the GNU C Library implementation, which is
used on all major Linux distributions (e.g. @ amazon-auto Amazon Git}
CentOS/AlmaLinux/Rocky, Debian/Ubuntu, SuSE).
The glibc library, libc.so, provides most of the ‘ /
foundational C routines such as open, read, write,
malloc, printf, and literally thousands more. It alsc *
provides the interface to the Linux kernel via
syscalls. For the purposes of this discussion, the
facility of interest is the locale functionality, and
more specifically the functions that provide stri\

sorting according to localized collation rules.

Locale specific sorting is important and relevant for
programs such as PostgreSQL. That is because, a
database, PostgreSQL must frequently sort and th
persist string data according to the specified local
collation. In order for this to work durably and
correctly, the sort order must be determinant and
immutable.

adWs

> 34

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

CONFERENCE SCHEDULE - PGCON 2023

Back

SORTING OUT GLIBC COLLATION CHALLENGES

Date: 2023-05-31
Time: 10:00-10:45
Room: DMS 1140
Level: Intermediate

Background: "libc" is commonly used as a shorthand for the "standard C library", a library of standard functions that can be used by all C
programs. glibc is the GNU C Library implementation, which is used o
glibc library, libc.so, provides most of the foundational C routines suc
provides the interface to the Linux kernel via syscalls.

WS
For the purposes of this talk, the facility of interest is the locale functi a

according to localized collation rules. In order for PostgreSQL to work] \/‘7
Since glibc implements the sort order, if/when glibc changes the sort
PostgreSQL, and thereby causes data corruption. Indexes that have b
order according to the currently installed version of glibc.

u
Proposed Solution: A solution, outlined in this talk, demonstrates a m Co I I at I o n C h a I Ie n g es

specific glibc base-version. That may then be used on another Linux s .
and/or OS upgrades. Sorting It Out

Summary: If a PostgreSQL database resides on, for example, a RHEL
upgraded to RHEL 8 with glibc version 2.28, the majority of indexes b Joe Conway

examples of the types of breakage that can occur, the proposed soluf conway@amazon com
SPEAKER mail@joeconway.com

Joe Conway AWS

May 31, 2023

adWs

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
R > 9

INCORwer

12. ICU solves everything

aWs, © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

ICU is a far better choice than the
operating system C library

But it doesn't solve everything

Every single Ubuntu LTS in the
last 8 years has ICU sort order
changes

adWs

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
R > 9

Ubuntu - ICU

ICU
Version

52.1-
3ubuntu0.8

55.1-
7ubuntu0.5

60.2-
3ubuntu3.1

63.1-6

66.1-
2ubuntu2

67.1-4

67.1-
6ubuntu2

67.1-
7ubuntu

70.1-2

71.1-
3ubuntu1

Operating Total
System en-US

Ubuntu
14.04.6
LTS
Ubuntu
16.04.7 324
LTS blocks)
Ubunt
ons O
o blocks
LTS
Ubuntu 1
19.04 blocks)
Ubuntu (57
20.04.3 —
blocks
LTS
Ubunt
. 0
20.10
Ub
untu 0
21.04
Ubuntu
21.10 0
Ubuntu (47
22.04 LTS blocks)
Ubuntu
22.10

Unicode
Blocks
en-US

286654
(Full
Diff)

23741
(Full
Diff)

688
(Full
Diff)

6497
(Full
Diff)

879
(Full
Diff)

. Total
Total Unicodoe 2h-
Blocks
a-JP ia-Jp Hans-
J CN
324 286654 (324
blocks) (Full Diff) blocks)
(66 23741 (68
blocks) (Full Diff) blocks)
(41 688(Rul (M
blocks) Diff) blocks)
(58 6501 (Full (56
blocks) Diff) blocks
0 0 0
0 0 0
0 0 0
(47 875 (Ful (48
blocks) Diff) blocks)
0 0 0

Unicode
Blocks
zh-
Hans-
CN

286654
(Full
Diff)

24415
(Full
Diff)

688
(Full
Diff)

6513
(Full
Diff)

887
(Full
Diff)

Total
ru-RU

324

E
(o]
(9]
Vol
[

U-A
()]
(@]

locks

ocks

EE

o1
~N

(o}

locks

o

o

o

blocks)

o

—= 1o 107 IN

lw)

o= 1o

o

37

INCOR v

13. ICU never had a huge sort order
change like the glibc 2.28 fiasco

aW% © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

Ubuntu - ICU

Total Unicode
ICU Operating Total Unicode Total Unicodoe zh- Blocks Total
. Blocks . Blocks zh-
Version System en-US ja-JP . Hans- ru-RU
en-US ja-JP CN Hans-
CN
Ubuntu Every single code point (the total
52.1- 14.04.6 count in Unicode 15 is 286,654) had
3ubuntu0.8 LT'S ’ at least one string changing sort
/ order between ICU 52 and ICU 55
55.1- :J;;Zt; (324 (2F8u€|3|654 (324 286654 (324 (2:u6||6 % (32
7ubuntu0.5 LTS blocks) Diff) blocks) (Full Diff) blocks) Diff) blocks)
60.2- ?;gzt; (66 (25';?1 (66 23741 (68 (2;:::5 (66
3ubuntu3.1 LTS blocks) Diff) blocks) (Full Diff) blocks) Diff) blocks)
6216 Ubuntu (41 ?:ﬁl (41 688 (Full (41 ?:E (41
. P blocks) . blocks) Diff) blocks) . blocks)
A “diff” between 26 million sorted Diff) Diff)
strings from ICU 67.1 (Ubuntu 21.10) 57 897 | ss | esorEun | (s6 | 0% (57
. Full Full
and ICU 70.1 (Ubuntu 22.04) using the | blocks) éiff) blocks) Diff) blocks) E):f) blocks)
locale “en-US” reported 879 distinct
characters in patterns that moved to a ’ ° ° : - ° ° (
) : Click “879” for a complete list of all
different location. Those characters 0 0 0 strings that “diff” says changed position.
. There are more than 879, since many
were spread over 47 Unlc?/?_e BlO(jbkunStu code points had multiple strings change
7 ' 0 0 0 position. Click “Full Diff” to see the raw
ubuntu1 2110 .
/ output of the diff command.
Click here for a summary of Ubuntu (47 879 (47 875 (Full (48 887 (47
which string patterns and how | 701-2 2204 LTSme blocks) blocks) ~ Diff) blocks) ! blocks)
many distinct code points p Diff) Diff)
adws appear in each of the 47 [711- Ubuntu
~ impacted unicode blocks 3ubuntu) 2210 0 0 0 0 0 0 (

Collation Torture Test Summary

« Both glibc and ICU have reqular collation changes.

- Both had at least one release with very large numbers of changes.

- PL/pgSQL code is published on github to generate a table with
the 26 million strings in the “collation torture test”

- Can checksum the sorted list to create a test and detect changes

https://github.com/ardentperf/glibc-unicode-sorting/blob/main/run-icu.sh#L65

aws .,

024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
R > 9

INCOR v

14. Assume Devrim and Christoph are
happy to build old ICU versions for you

Y6
/' Unclear if we want this?
'\ Join the mailing lists and let’s discuss!

New contributors always welcome!

aWs, © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

INCORwer

15. Sort order doesn’t change in library
updates with just patch version changes

glibc 2.26-59.amzn?2

aW% © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

INCOR v

16. Sort order doesn’t change in library
updates with NO version changes

aW% © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

When It Changed With No Version Bump

< C 2% postgresqgl.verite.pro/blog/2023/10/20/icu-73-versioning.html w D -

PostgreSQL Notes - Daniel Veérité About

The collation versioning problem with
ICU 73

Oct 20, 2023
When trying ICU 73, I’'ve noticed that some strings are ordered differently than with the previous version
with collations whose versions haven’t changed.

It turns out to be an ICU bug that is due to an uncommon move, as told in the bug’s comments:

this change was basically a cherry-pick from the then-future Unicode 15.1 change [...] | think this is the
first time (at least for over ten years) that we changed the root sort order without upgrading to a whole
new Unicode version.

That’s a problem for Postgres, as we’re counting on these version numbers to change whenever

collations change.

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
R > 9

INCOR v

17. Postgres doesn’t yet have builtin
collation that avoids all corruption risks

aW% © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

POSIX locale - also known as C locale

adWs

N7

INDEX

I

[Alphabetic | Topic | Word
Search]

Select a Volume:
[Base Definitions |
System Interfaces |
Shell & Utilities | Rationale]

[Frontmatter]

[Main Index]

Base Definitions

. Introduction

. Conformance

. Definitions

. General Concepts

. File Format Notation

. Character Set

. Locale

. Environment Variables

. Regular Expressions

. Directory Structure and
Devices

CLVWoONOOTUTDAWNKF

12. Utility Conventions
13. Headers

11. General Terminal Interface

< C 2% pubs.opengroup.org/onlinepubs/9699919799/ w) =

<<< Previous Home Next >>>

The Open Group Base Specifications Issue 7, 2018 edition
IEEE Std 1003.1-2017 (Revision of IEEE Std 1003.1-2008)
Copyright © 2001-2018 IEEE and The Open Group

7. Locale

7.1 General

A locale is the definition of the subset of a user's environment that depends on language and cultural conventions. It is made up from
one or more categories. Each category is identified by its name and controls specific aspects of the behavior of components of the
system. Category names correspond to the following environment variable names:

LC CTYPE
Character classification and case conversion.
LC COLLATE
Collation order.
LC_MONETARY
Monetary formatting.
LC _NUMERIC
Numeric, non-monetary formatting.

7.2 POSIX Locale

Conforming systems shall provide a POSIX locale, also known as the C locale. In POSIX.1 the requirements for the POSIX locale are
more extensive than the requirements for the C locale as specified in the ISO C standard. However, in a conforming POSIX
implementation, the POSIX locale and the C locale are identical. The behavior of standard utilities and functions in the POSIX locale
shall be as if the locale was defined via the localedef utility with input data from the POSIX locale tables in Locale Definition.

For C-language programs, the POSIX locale shall be the default locale when the setlocale(). function is not called.
The POSIX locale can be specified by assigning to the appropriate environment variables the values "C" or "POSIX".

All implementations shall define a locale as the default locale, to be invoked when no environment variables are set, or set to the
empty string. This default locale can be the POSIX locale or any other implementation-defined locale. Some implementations may
provide facilities for local installation administrators to set the default locale, customizing it for each location. POSIX.1-2017 does not
require such a facility.

-

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

46

INCORwer

18. Postgres C and C.UTF-8 are the same

libc provider
C collation

libc provider

C.UTF-8 collation

implemented internally; does
not call libc (the PG provider
name of “libc” is misleading)

calls libc

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
R > 9

47

INCOR v

19. Sort order doesn’t change in C. UTF-8

aWs, © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

Sort Order Changed in glibc C.UTF-8

From: "Daniel Verite" <daniel(at)manitou-mail(dot)org>
To: pgsql-hackers(at)postgresql(dot)org

Subject: pg_collation.collversion for C.UTF-8

Date: 2023-04-18 12:35:50

Message-1D:8a3dc06f-9b9d-4ed7-9a12-2070d8b0165f@manitou-mail.org

Views: Raw Message | Whole Thread | Download mbox | Resend email
Lists: pgsql-hackers
Hi,

get_collation_actual_version() in pg_locale.c currently
excludes C.UTF-8 (and more generally C.x) from versioning,
which makes pg_collation.collversion being empty for these
collations.

char *
get_collation_actual_version(char collprovider, const char xcollcollate)

{

if (collprovider COLLPROVIDER_LIBC &&
pg_strcasecmp("C", collcollate) != 0 &&
pg_strncasecmp("C.", collcollate, 2) != 0 &&
pg_strcasecmp("POSIX", collcollate) != 0)

This seems to be based on the idea that C.* collations provide an
immutable sort like "C", but it appears that it's not the case.

For instance, consider how these C.UTF-8 comparisons differ between
recent linux systems:

U+1D400 = Mathematical Bold Capital A

Debian 9.13 (glibc 2.24)

=> select 'A' < E'\U0001D400' collate "C.UTF-8";
?column?
t

Debian 10.13 (glibc 2.28)

=> select 'A' < E'\U0001D400' collate "C.UTF-8";
?column?
f

Debian 11.6 (glibc 2.31)

=> select 'A' < E'\U0001D40@' collate "C.UTF-8";
?column?
f

Ubuntu 22.04 (glibc 2.35)

=> select 'A' < E'\U0001D400' collate "C.UTF-8";
?column?
t

< (] 25 sourceware.org/glibc/wiki/Proposals/C.UTF-8 Q W 3
glibc wiki " [Search
sei.. Proposals/ C.UTF-8

HomePage | RecentChanges || FindPage HelpContents | | Proposals/C.UTF-8

Immutable Page Info Attachments More Actions: v

C.UTF-8 locale

2015

Contents

1. Status
2. Problem Statement
3. Proposal
1. Builtin
2. Defaults
4. Other Art
1. POSIX
2. Debian
3. Fedora/RedHat
4.08 X
5. References

1. Status

@ Merged for glibc 2.35

2. Problem Statement

Modern systems need a modern encoding system to deal with global data. The old customs
data as @ ASCII (or ®1SO 8859-1) is long past and has no business in the 21st century. Pe
hitting @ mojibake today is deplorable.

However, there is no way today to select UTF-8 encoding without also picking a country/lang
locale. Many projects hardcode en_US.UTF-8, or maybe try one or two more (like en_GB.UTF-§
de_DE.UTF-8), before giving up and failing. This is also why distros often do not select a UTF
by default since the related locale attributes are undesirable.

Python blazed an admirable trail here by putting encoding front and center with its 3.x series
runs into a problem where it has to guess as to the encoding of stdin/stdout/stderr. By makin|
available, this can be handled gracefully.

3. Proposal

The world has largely settled on the @ Unicode standard with @ UTF-8 as the leading encod

git:/sourceware.org / glibc.git / commit

summary | shortlog | log | commit | commitdiff | tree | commit VI_’? search:
(parent: f5117¢6) | patch

Add generic C.UTF-8 locale (Bug 17318)

author Carlos 0'Donell <carlos@redhat.com> 202 1
Wed, 1 Sep 2021 19:19:19 +0000 (15:19 -0400)

committer Carlos 0'Donell <carlos@redhat.com>
Mon, 6 Sep 2021 15:30:28 +0000 (11:30 -0400)

commit 466T2be6c08070e9113ae2fdc7acd5d8828cba50

tree c4fb7c10d98994298dcd451df71f1be790b575€9 tree

parent 5117c6504888fab5423282a4607c552b90fd3f9 commit | diff

Add generic C.UTF-8 locale (Bug 17318)

We add a new C.UTF-8 locale. This locale is not builtin to glibc, but
is provided as a distinct locale. The locale provides full support for
UTF-8 and this includes full code point sorting via STRCMP-based
collation (strcmp or wcscmp).

The collation uses a new keyword 'codepoint_collation' which drops all
collation rules and generates an empty zero rules collation to enable
STRCMP usage in collation. This ensures that we get full code point
sorting for C.UTF-8 with a minimal 1406 bytes of overhead (LC_COLLATE
structure information and ASCII collating tables).

The new locale is added to SUPPORTED. Minimal test data for specific
code points (minus those not supported by collate-test) is provided in
C.UTF-8.1in, and this verifies code point sorting is working reasonably
across the range. The locale was tested manually with the full set of
code points without failure.

The locale is harmonized with locales already shipping in various
downstream distributions. A new tst-iconv9 test is added which verifies
the C.UTF-8 locale is generally usable.

Testing for fnmatch, regexec, and recomp is provided by extending
bug-regexl, bugregex19, bug-regex4, bug-regex6, transbug, tst-fnmatch,
tst-regcomp-truncated, and tst-regex to use C.UTF-8.

Tested on x86_64 or i686 without regression.

Reviewed-by: Florian Weimer <fweimer@redhat.com>

Hence we will provide an amalgamation of POSIX's C locale with UTF-8 encoding.

The new locale name shall be C.UTF-8. It shall be the ¢ locale but with UTF-8 encodings.

Setting LC_ALL=C.UTF-8 will ignore LANGUAGE just like it does with LC_ALL=C. See guess_category_value()

49

Sort Order Changed in glibc C.UTF-8

aws
~—

libc provider
C collation

libc provider
C.UTF-8 collation

implemented internally; does
not call libc (the PG provider
name of “libc” is misleading)

calls libc

stable & safe; does not change

changes should be uncommon
(less than icu and libc linguistic
locales), but history shows that
both character semantics and sort
order have not remained
unchanged

for example in Debian/Ubuntu
(cf. mailing list thread)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

50

INCORRB v

20. Collation provider is only for sort order

aWs, © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

Postgres “C" Locale Only Understands ASCII

CTYPE = upper, lower, initcap, regex character classes, etc

—— show the inability of "C" to uppercase accented characters
test=> select initcap('élysée' collate "C");

initcap
--------- Accented characters not uppercased correctly

6LyséE Thinks accented character is not a letter

—— show the ability of "C.utf8" to uppercase accented characters
test=> select initcap('élysée' collate "C.utf8");
initcap

https://postgresql.verite.pro/blog/2024/03/13/binary-sorted-indexes.html

aws

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
R > 9

INCORwer

21. CTYPE doesn’t change in C.UTF-8

aWs, © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

Upper,etc can change too

aws
~—

From: Thomas Munro <thomas(dot)munro(at)gmail(dot)com>

To: Jeff Davis <pgsql(at)j-davis(dot)com>

Cc: Daniel Verite <daniel(at)ymanitou-mail(dot)org>, pgsql-hackers(at)postgresql(dot)org
Subject: Re: pg_collation.collversion for C.UTF-8

Date: 2023-06-17 05:54:35
Message-ID:CA+hUKGKr-b33uw_3nUEa80afTORKyOD+0041ztRLyuby4oQX8g@mail.gmail.com
Views: Raw Message | Whole Thread | Download mbox | Resend email

Lists: pgsql-hackers

On Sat, Jun 17, 2023 at 10:03 AM Jeff Davis <pgsql(at)j-davis(dot)com> wrote:

> I assume you mean that the collation order can't (shouldn't, anyway)
> change. But what about the ctype (upper/lower/initcap) behavior? Is
> that also locked down for all time, or could it change if some new
> unicode characters are added?

Fair point. Considering that our collversion effectively functions as
a proxy for ctype version too, Daniel's patch makes a certain amount
of sense.

Our versioning is nominally based only on the collation category, not
locales more generally or any other category they contain (nominally,
as in: we named it collversion, and our code and comments and
discussions so far only contemplated collations in this context).
But, clearly, changes to underlying ctype data could also cause a
constraint CHECK (x ~ '[[:digit:]]') or a partial index with WHERE
(upper(x) <> 'B') to be corrupted, which I'd considered to be a
separate topic, but Daniel's patch would cover with the same

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

54

INCORwer

22. Users want DB-wide linguistic sort

No widely used major database today would default to
code-point or binary sort order

aW% © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

Code Point Order as Database Default

aws
~—

https://ardentperf.com/2024/05/22/default-sort-order-in-db2-sql-server-oracle-postgres-17/

_ Default Collation Server/Client System Catalogs | UCA Support

Oracle Code Point Order t Property of connection/client, Always BINARY Unicode Versions
(called BINARY) can change 6.1/6.2/7.0/12.1
builtin
Db2 Code Point Order Property of database/server, Always IDENTITY Unicode Versions
(called IDENTITY) cannot change for Unicode DBs 40/50/52/7.0
builtin
SQL Server OS default locale Property of database/server, can Server collation Not supported (afaik?)
with 8-bit encoding change DB default for new
objects, cannot server/catalogs
Postgres OS default locale Property of database/server, Database collation Unicode Version 4.2+
with Unicode cannot change installed separately

1 If Oracle client locale is Europe, Middle East, Quebec, or a few other unlucky countries — then the default behavior is that ORDER BY and a few
functions like regex sort with client locale, while operators like greater-than, less-than, group-by and indexes still use code-point/BINARY order.

Anecdotally, it seems common to run Oracle with default settings for database-wide collation.

Oracle third-party apps like eBusiness Suite require binary (code-point) collation.
Some SQL Server third-party apps also mandate a specific collation, for portability.

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

56

Code Point Order as

Database Default

o=
-0

* O =

&

PostgreSQL Notes - Daniel Vérité

C postgresql.verite.pro/blog/2024/03/13/binary-sorted-indexes.html

About

Using binary-sorted indexes

Mar 13, 2024

In a previous post, | mentioned that Postgres databases often have text indexes sorted linguistically
rather than bytewise, which is why they need to be reindexed on libc or ICU upgrades. In this post,
let’s discuss how to use bytewise sorts, and what are the upsides and downsides of doing so.

Sorting strings in binary means comparing the bytes inside the strings without caring at all about what
characters they represent. For instance in an UTF-8 database, when considering the strings Beta and
alpha :

Ongoing discussion: making a case for binary at DB level?

[]) [
arch ‘ aa - Q F—\
Home My Network Jobs Messaging Notifications

Jobin Augustine - 1st
, ! Passionate about PostgreSQL
| L 1Mh. ®
" After dealing with a large set of troubles users are getting into due to character
\ugustine collations rules (Index corruptions/upgrade troubles, Wrong query results, etc.)

| am sure that the majority of PostgreSQL users are not aware of the character

bout PostgreSQL . , . . e e e
collation-related troubles that await them if the data directory is initialized

« abytewise comparison says that ["Beta’ < "alpha'], since the code point of the upper-case Uil Profile (initdb) with all system defaults, which takes the host machine's localizations.
letter B is ©x42 and the code point of the lower-case letter a is 0x61 . My suggestion? Stick with binary collation on the server side unless you have a
« alinguistic comparison says that 'alpha' < 'Beta' because it understands that the letter a compelling reason to do otherwise.
comes before B even when cases are mixed. More generally linguistic collations have sorting
rules concerning accents, punctuation, symbols, plus potentially regional tailorings. & 25 ardentperf.com/2024/05/22/default-sort-order-in-db2-sql-server-oracle-postgres-17/

A brief pros and cons comparison of these sorts could look like this:

Linguistic order | Binary order

Ease of use better X worse
Human readability | 4 better X worse
Range search (¥) better X worse
Performance X worse better
Portability X worse 100%
Real immutability | X No Yes

LIKE prefix search | X No Yes

() Locating strings between two bounds, for instance to output paginated results

Default Sort Order in Db2, SQL Server, Oracle & Postgres 17

POSTED BY JEREMY - MAY 22, 2024 - LEAVE A COMMENT

[Z[R=DRV[s]4:] COLLATION, COMPARISON, DATABASE, DB2, ORACLE, POSTGRESQL, SORT, SQL, SQLSERVER

TLDR: | was starting to think that the best choice of default DB collation (for sort order, comparison,
etc) in Postgres might be ICU. But after spending some time reviewing the landscape, | now think
that code-point order is the best default DB collation — mirroring Db2 and Oracle — and
linguistic sorting can be used via SQL when it’s actually needed for the application logic. In
existing versions of Postgres, this would be something like C or C.UTF-8 and Postgres 17 will add the
builtin collation provider (more details at the bottom of this article). This ensures that the system

catalogs always use code-point collation, and it is a similar conclusion to what Daniel Vérité seems to
propose in his March 13 blog, “Using binary-sorted indexes”. | like the suggestion he closed his blog
with: SELECT ... FROM ... ORDER BY colname COLLATE "unicode" —when you need natural language sort order.

57

INCOR v

23. Postgres isn't likely to get a new
builtin collation solving these problems

Usable character semantics and no corruption risks

aW% © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

23. Post
builtin c

Usable chai

C 2% postgresgl.org/about/news/postgresql-17-beta-1-released-2865/ w)

PostgreSQL 17 Beta 1 Released!

Posted on 2024-05-23 by PostgreSQL Global Development Group

The PostgreSQL Global Development Group announces that the first beta release of PostgreSQL 17 is now
available for download. This release contains previews of all features that will be available when PostgreSQL
17 is made generally available, though some details of the release can change during the beta period.

You can find information about all of the PostgreSQL 17 features and changes in the release notes:
https://www.postgresql.org/docs/17/release-17.html

In the spirit of the open source PostgreSQL community, we strongly encourage you to test the new features
of PostgreSQL 17 on your systems to help us eliminate bugs or other issues that may exist. While we do not
advise you to run PostgreSQL 17 Beta 1 in production environments, we encourage you to find ways to run

your typical application workloads against this beta release.

Your testing and feedback will help the community ensure that the PostgreSQL 17 release upholds our
standards of delivering a stable, reliable release of the world's most advanced open source relational
database. Please read more about our beta testing process and how you can contribute:

https://www.postgresql.org/developer/beta/

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

_/7

59

Taking a Step Back

IS COLLATION TOO COMPLICATED?

« Should we ignore the complexity?
« Handle it in the application?

« Let's start with what would be missing, and fix one problem at a time

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
R > 9

60

Locale “C"

THE NON-LOCALE

« Binary string comparison
« Character semantics are only defined for ASCII characters
« Problems:
= Sort order is encoding-dependent
» LOWER() and UPPER() don't handle accented characters
= 'Z' sorts before ‘a’ (and other unnatural sort orders)

= No case-insensitive sorting

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
R > 9

61

Locale “C.UTF-8"

IMPROVED IN VERSION 17 WITH BUILTIN PROVIDER

« Code point sort order

« Character semantics are based on Unicode

« Problems:
» 'Z' sorts before ‘a’ (and other unnatural sort orders)
= No case-insensitive sorting

= Caveats when using libc provider

— solved with builtin provider in 17

aws
5 © 2024, Amazon Web S

ervices, Inc. or its affiliates. All rights reserved.

ICU Root (“und”) Collation

NATURAL LANGUAGE SEMANTICS NOT TIED TO A SPECIFIC LOCALE

« Natural language sort order based on Unicode and CLDR
« Provides reasonable semantics in a variety of locales

= Solves 'Z' <'a' problem
« Problems:

= Collation changes over time can cause inconsistent indexes

— Must carefully manage library versions
= Slower performance than code point order or binary order

= Not specific to any locale, so will produce surprising results for some
languages or regions

adws
5 © 2024, Amazon Web S

ervices, Inc. or its affiliates. All rights reserved.

Initdb

SELECT DATABASE DEFAULT COLLATION

database collation builtin C.UTF-8

(version 17+)
initdb ——locale—-provider=builtin \

——builtin-locale=C.UTF-8 data

database collation ICU root collation

(version 15+)
initdb ——locale-provider=icu \

——1cu-locale=und data

aws

2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
R > 9

64

COLLATE clause

APPLY COLLATIONS TO INDIVIDUAL QUERIES

—— Builtin C.UTF-8

— (version 17+)
SELECT * FROM mytable ORDER BY t COLLATE PG_C_UTFS,;

— ICU root collation
—— (requires ICU)
SELECT * FROM mytable ORDER BY t COLLATE UNICODE;

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
R > 9

65

ICU Tips & Tricks

CREATING SPECIALIZED COLLATIONS

« (Case-insensitive
« Specific locale

« Numeric values in strings

adWs

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.
R > 9

66

ICU Provider — Case Insensitive

ICU CUSTOMIZABILITY

CREATE COLLATION case_insensitive(
PROVIDER=1icu,

DETERMINISTIC=false,
LOCALE="und-u-ks-level2'

);

SELECT 'z' ='Z' COLLATE case_insensitive; -- true

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights res
\/‘7

67

ICU Provider - Specific Locale

ICU CUSTOMIZABILITY

CREATE COLLATION french_cal
PROVIDER=1icu,
LOCALE="fr-CA'

);

SELECT * FROM mytable ORDER BY t COLLATE french_ca;

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights res
\/‘7

68

ICU Provider - Numbers

ICU CUSTOMIZABILITY

CREATE COLLATION collate_numbers(
PROVIDER=1icu,

DETERMINISTIC=false,
LOCALE= "und-u-kn'

);

SELECT 'id-45' < 'id-123' COLLATE collate_numbers; -- true

aWS © 2024, Amazon Web Services, Inc. or its affiliates. All rights res
\/‘7

69

Future Work

WHAT'S NEXT?

« More standards-compliant UCS_BASIC

« Unicode case folding

« What are the guidelines for using code point vs. natural language sort?
« Should we reject unassigned code points?

« Should we force Unicode normalization?

« Should Postgres take responsibility for managing different versions of collation
libraries?

aws

2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. 70
R > 9

Conclusion

CONSIDER THE TRADE-OFFS

Code point order collation is fast and stable

Natural language collations produce superior results for humans
= But can change and may produce inconsistent indexes

"C.UTF-8" locale is a balance that offers code point order collation and Unicode
character semantics

= |mproved with builtin provider in version 17

Choose what makes sense

Use COLLATE clause to control where a collation applies

aW% © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. 71

Thank You!

Jeff Davis
Jeremy Schneider

72

