
Multidimensional
search strategies
for composite B-Tree
indexes

Peter Geoghegan

geogpete@amazon.com

pg@bowt.ie

mailto:pg@bowt.ie

Overview
1.Skip scan: Overview

Summary of the feature, with real examples

2.Skip Scan runtime cost profile and the optimizer
 Adaptive/dynamic design philosophy

3.Postgres 18 OR transformation work
Summary of related/enabling optimizer work

4. MDAM style "general OR optimization"
Possible areas for future improvements

Skip Scan: Overview
The skip scan optimization allows the system to make more
effective use of existing multicolumn B-Tree indexes in certain
contexts

Used when a prefix of one or more columns has an "="
condition omitted in SQL statement's predicate

Treats the index as a "series of logical subindexes" (one
subindex per distinct value in skipped prefix column)

Most effective when skipped column has few distinct values
(i.e. when there are few "logical subindexes" to consider)

nbtree implementation influenced by 1995 paper "Efficient
Search of Multidimensional B-Trees" (the "MDAM paper")

Only need to read "dimension_3 = 2"
tuples in shaded areas (irrelevant unshaded

areas will be "skipped over" instead)

Brief PSA: Skip scan != Loose index scan

Skip scan has often been confused with "loose index scan", a feature
that MySQL has had for some time (MySQL's skip scan feature was
aded much later, in 2018)

I named this feature skip scan because that's the name used by
MySQL, Oracle, and SQLite for their versions of the same
feature

Loose index scan is more specialized than skip scan: can only
be used with GROUP BY queries/DISTINCT queries

Loose index scan "returns groupings" rather than returning
tuples, and saves on both index accesses and heap accesses

Superficial similarity (the way that both techniques "skip")
seems to throw people off

Skip Scan: Benefits for users
Gives users acceptable performance with seldom-run
queries that might not merit a "dedicated" index

- Obviously, users always pay to store and maintain
an index, but only get a benefit when the index is
actually scanned

- With modern hardware, an index scan that performs
tens of thousands of index searches can complete
in under 200 milliseconds with a well cached index

Provides more robust performance, especially when
requirements change at short notice

Skip Scan: Benefits for users
(cont.)

Simplifies the "put column for highly selectivity qual first" versus "make index's column
order match ORDER BY" trade-off. This sometimes comes up when choosing the ideal
index for an important "ORDER BY ... LIMIT N" query

- Do we prioritize avoiding a sort/terminating the scan early for our "ORDER BY ...
LIMIT N" query? Should CREATE INDEX column order match the query's ORDER
BY columns?

- OR, do we prefer to put the most selective index column first (typically a column
involving "=" condition) in CREATE INDEX, at the cost of having to always read the
whole result set and sort it each time?

- Worst case matters a lot. Is LIMIT 1 or LIMIT 100 more typical? Will the query
sometimes return 0 rows?

Skip scan makes it safer to prioritize avoiding a sort/avoiding reading all matching data
in the index (i.e. makes it's safer to favor LIMIT N ending the scan early)

- Typical case where it might help involves a "date between x and y" condition, plus
some additional selective "=" condition on another column

-- Create and load example table, "tab":
create table tab (a int4, b int4);
CREATE TABLE
create index multicol on tab(a, b);
CREATE INDEX

-- 10 distinct values in "a", 50k distinct "b" values:
insert into tab (a, b) select i, j from generate_series(1, 10) i,
generate_series(1, 50_000) j;
INSERT 0 500000

-- Query (uses skip scan):
select * from tab
where b = 5_000;

-- Skip scan uses a ScalarArrayOp-like array internally:
select * from tab
where a = ANY('{every possible value}') -- does "IS NULL" matching
and b = 5_000;

-- Index-only scan, applies skip scan optimization:
=# explain (analyze, costs off, timing off)
 select * from tab
 where b = 5_000;
 QUERY PLAN

 Index Only Scan using multicol on tab (rows=10.00 loops=1)
 Index Cond: (b = 5000)
 Heap Fetches: 0
 Index Searches: 12
 Buffers: shared hit=37
 Planning Time: 0.017 ms
 Execution Time: 0.023 ms
(7 rows)

Skip Scan and ScalarArrayOps
Postgres 18 adds nbtree skip scan, which builds directly on work on nbtree
ScalarArrayOp index quals from Postgres 17

ScalarArrayOpExprs (AKA SAOPs) are how the system represents things like
"where a in (1, 2, 3)" and "where a = ANY('{1, 2, 3}')"

Postgres 17 work made nbtree scans navigate the index dynamically, based on
physical index characteristics

- Typically, "where a in (1, 2, 3)" uses only 1 index search in Postgres
17 and 18 -- earlier versions always used 3

- "where a in (10_000, 20_000, 30_000)" likely will still perform 3
index searches (as with prior Postgres versions), since that's probably still
the fastest approach

- When and where we skip (i.e. the number of index searches) is determined
dynamically

Postgres 18 reuses this infrastructure for skip scan

-- "Equivalent" SAOP index-only scan:
=# explain (analyze, costs off, timing off)
 select * from tab
 where a in (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) and b = 5_000;
 QUERY PLAN

 Index Only Scan using multicol on tab (rows=10.00 loops=1)
 Index Cond: ((a = ANY ('{1,2,3,4,5,6,7,8,9,10}'::integer[])) AND (b = 5000))
 Heap Fetches: 0
 Index Searches: 10
 Buffers: shared hit=31
 Planning Time: 0.028 ms
 Execution Time: 0.022 ms
(7 rows)

-- Index-only scan, applies "range" skip array:
=# explain (analyze, costs off, timing off)
 select * from tab
 where a between 1 and 10 and b = 5_000;
 QUERY PLAN

 Index Only Scan using multicol on tab (rows=10.00 loops=1)
 Index Cond: ((a >= 1) AND (a <= 10) AND (b = 5000))
 Heap Fetches: 0
 Index Searches: 10
 Buffers: shared hit=31
 Planning Time: 0.025 ms
 Execution Time: 0.022 ms
(7 rows)

SAOP arrays and skip arrays
Arrays (whether SAOP or skip type arrays) advance in lockstep with the scan's progress
through the index's key space

Find the best match for a given attribute value from an index tuple, using binary
search of attribute's array

Advances to next closest array element ("next" in terms of scan direction) when no
exact match exists

Lower-order arrays "roll over" to higher-order arrays when there's no exact match
and no next closest array match remains (i.e. when we "reach the end of the array")

- When this happens, the array is reset to its first element, and the next most
significant array must increment its array element in turn

- "Skip support" is type-aware/opclass infrastructure, that "increments" skip arrays
(e.g., when we've reached the end of "a = 5" matches, increments to "a = 6")

- When the most significant array "tries to roll over", we just end the top-level scan
(all tuples matching any possible set of array elements were already returned)

-- Uses "mdam_idx" on (dept, sdate, item_class, store) columns:
=# explain (analyze, costs off, timing off)
select
 dept,
 sdate,
 item_class,
 store,
 sum(total_sales)
from
 sales_mdam_paper
where
 -- "dept" column omitted from qual
 sdate between '1995-06-01' and '1995-06-30'
 and item_class in (20, 35, 50)
 and store in (200, 250)
group by dept, sdate, item_class, store
order by dept, sdate, item_class, store;
 QUERY PLAN
--
 GroupAggregate (actual rows=18000.00 loops=1)
 Group Key: dept, sdate, item_class, store
 Buffers: shared hit=54014
 -> Index Scan using mdam_idx on sales_mdam_paper (actual rows=18000.00 loops=1)
 Index Cond: ((sdate >= '1995-06-01'::date) AND (sdate <= '1995-06-30'::date) AND ...
 Index Searches: 9002
 Buffers: shared hit=54014
 Planning:
 Buffers: shared hit=133
 Planning Time: 0.550 ms
 Execution Time: 45.910 ms
(11 rows)

 dept=-∞, date='1995-06-01', item_class=20, store=200
 dept=1, date='1995-06-01', item_class=20, store=200
 dept=1, date='1995-06-01', item_class=20, store=250
 dept=1, date='1995-06-01', item_class=35, store=200
 dept=1, date='1995-06-01', item_class=35, store=250

... (omitted: 8994 similar accesses)...

dept=100, date='1995-06-30', item_class=50, store=200
dept=100, date='1995-06-30', item_class=50, store=250
dept=101, date='1995-06-01', item_class=20, store=200

Index Searches: 9002

- 100 departments × 30 days × 3 item classes × 2 stores = 18,000 rows
returned

- 9,000 index searches return 2 rows due to physical index characteristics:
each pair of "store = 200" and "store = 250" tuples appear close together, on
the same index leaf page

- Plus 2 "extra" searches for non-existent "dept=-∞" and "dept=101" entries

Overview
1.Skip scan: Overview

Summary of the feature, with real examples

2.Skip Scan runtime cost profile and the optimizer
 Adaptive/dynamic design philosophy

3.Postgres 18 OR transformation work
Summary of related/enabling optimizer work

4. MDAM style "general OR optimization"
Possible areas for future improvements

Architectural goals
Accurately modeling the costs and benefits of
skipping is hard in general

No new optimizer paths that have to compete with
traditional full index scan paths

- Optimizer generates the same index paths as before
(though btcostestimate() accounts for skipping)

- If there's only one choice, there are no wrong
choices

- Make all decisions about skipping at runtime

Architectural goals (cont.)
In order to reuse existing/standard optimizer index paths, skip scan has
to work alongside all existing functionality

As discussed already, SAOP array/IN() list quals can be used freely

Mark/restore (for scans used by a merge join) works

All index scan optimizer paths generate useful path keys

- Useful with "ORDER BY ... LIMIT", etc

- Supports backwards scans/ORDER BY with DESC columns

- Scrollable cursors work (can scan back and forth)

All of these requirements were satisfied by reusing Postgres 17
SAOP mechanisms (no new code needed in Postgres 18)

Dynamic/adaptive scans
Making life easier for the optimizer makes life harder for the
executor/nbtree scan code

Occasionally, the fastest plan really does need to perform
a traditional full index scan

- Typically an index-only scan

- Skipping cannot help, but considering skipping
shouldn't unduly slow down these scans

nbtree has various runtime strategies that help

- Also helps with individual subsets of an index that
naturally "require a full index scan" due to data skew

— Goetz Graefe, Modern B-Tree Techniques

Perhaps the most complex aspect is
the cost analysis required for a cost-
based compile-time decision between a
full index scan, range scan, and
selective probes.

A dynamic run-time strategy might be
most efficient and robust against
cardinality estimation errors, cost
estimation errors, data skew, etc.

Dynamic/adaptive scans (cont.)
Skip arrays "anchor" the scan to index's key space via the scan's arrays/current set of
array elements (when no conventional "=" constraint can be taken from the query)

This enables "skipping within a page"

- Postgres 17 SAOP patch added this mechanism: the "look-ahead"
optimization

- Used by earlier MDAM sales example query (each pair of "store = 200" and
"store = 250" tuples not that close together)

- Also helps with scans that only perform "moderate skipping"

Skip arrays also enable optimizations that avoid evaluating scan keys that were
proven to be guaranteed to be satisfied by every possible tuple on a page via
an up-front check of the page's low and high tuples

- First implemented in Postgres 17, by work from Alexander Korotkov

- Postgres 18 much more effective here, particularly with complicated quals;
new improved mechanism is "array aware"

— Goetz Graefe, Modern B-Tree Techniques

“The number of distinct values is not the true
criterion, however. The alternative query
execution plan typically is to scan the entire
index with large sequential I/O operations.

The probing plan is faster than the scanning
plan if the data volume for each distinct leading
B-tree key value is so large that a scan takes
longer than a single probe. Note that this
efficiency comparison must include not only I/O
but also the effort for predicate evaluation.”

Index Searches: 1

- No chance of "skipping" here, since there are as many distinct "a" values as there
are tuples read

- Skip arrays nevertheless make query execution much faster

- _bt_readpage function determines inequality keys on "a" must already be satisfied

=# explain (analyze, costs off, timing off)
 select a, b
 from skiptest
 where a between 0 and 10_000_000 and b = 50;

 QUERY PLAN

 Index Only Scan using skiptest_a_b_idx on skiptest (actual rows=0.00 loops=1)
 Index Cond: ((a >= 0) AND (a <= 10000000) AND (b = 50))
 Heap Fetches: 0
 Index Searches: 1
 Buffers: shared hit=27325
 Planning:
 Buffers: shared hit=9
 Planning Time: 0.071 ms
 Execution Time: 147.001 ms
(9 rows)

Adapting to real world data
distributions
So far, all of our examples have used synthetic data with uniform random
distribution

Uniform data helpful when explaining underlying concepts

Real world data often has some kind of skew, though

- A few "heavy hitters" dominate, with a long tail of almost-unique
values

- Also contributes to difficulties with cost estimation

Legitimately need to vary our strategy during the same index scan

- An individual scan may apply either optimization, as data skew/
physical index characteristics dictate

Overview
1.Skip scan: Overview

Summary of the feature, with real examples

2.Skip Scan runtime cost profile and the optimizer
 Adaptive/dynamic design philosophy

3.Postgres 18 OR transformation work
Summary of related/enabling optimizer work

4. MDAM style "general OR optimization"
Possible areas for future improvements

Postgres 18 OR transformation
Work in Postgres 18 from Alena Rybakina, Alexander Korotkov, Andrei
Lepikhov, and Pavel Borisov complements recent nbtree improvements

Transforms OR lists into array/ScalarArrayOp representation that can
be passed down to index scans

- OR lists are semantically equivalent to IN() constructs (per SQL
standard)

- Avoids BitmapOr plans, which are sometimes much slower

Relevant Postgres 18 commits:

- "Transform OR-clauses to SAOP's during index matching" commit

- "Allow usage of match_orclause_to_indexcol() for joins" commit

- "Convert 'x IN (VALUES ...)' to 'x = ANY ...' when appropriate" commit

diff --git a/src/test/regress/expected/create_index.out b/src/test/regress/expected/create_index.out
index d3358dfc3..e4d117e47 100644
--- a/src/test/regress/expected/create_index.out
+++ b/src/test/regress/expected/create_index.out
@@ -1844,18 +1844,11 @@ DROP TABLE onek_with_null;
 EXPLAIN (COSTS OFF)
 SELECT * FROM tenk1
 WHERE thousand = 42 AND (tenthous = 1 OR tenthous = 3 OR tenthous = 42);
- QUERY PLAN
--
-
- Bitmap Heap Scan on tenk1
- Recheck Cond: (((thousand = 42) AND (tenthous = 1)) OR ((thousand = 42) AND (tenthous = 3)) OR
- -> BitmapOr
- -> Bitmap Index Scan on tenk1_thous_tenthous
- Index Cond: ((thousand = 42) AND (tenthous = 1))
- -> Bitmap Index Scan on tenk1_thous_tenthous
- Index Cond: ((thousand = 42) AND (tenthous = 3))
- -> Bitmap Index Scan on tenk1_thous_tenthous
- Index Cond: ((thousand = 42) AND (tenthous = 42))
-(9 rows)
+ QUERY PLAN
+--
+ Index Scan using tenk1_thous_tenthous on tenk1
+ Index Cond: ((thousand = 42) AND (tenthous = ANY ('{1,3,42}'::integer[])))
+(2 rows)

OR transformation: goals
Executor overhead adds up with BitmapOr type plans

- One index scan is faster than many, due to per-node executor costs,
which add up with more complicated queries

BitmapOr + Bitmap index scan approach is very general, but comes
with notable downsides compared to an approach that uses a single
scan for everything

Perhaps most useful as an "enabling transformation" - enables the use of
the SAOP nbtree index scan mechanism from Postgres 17

- Useful sort order/path keys can be used

- Enables all the usual tricks, such as allowing the scan to terminate
early with an "ORDER BY ... LIMIT" query

- Enables index-only scans

-- Add more "tenthous" values, add a LIMIT 2:
=# explain (analyze, costs off, timing off)
select * from tenk1
 where thousand = 42 AND
 (tenthous = 42 or tenthous = 1042 or tenthous = 2042 or tenthous = 3042)
 limit 2;
 QUERY PLAN

 Limit (actual rows=2.00 loops=1)
 Buffers: shared hit=4
 -> Index Scan using tenk1_thous_tenthous on tenk1 (actual rows=2.00 loops=1)
 Index Cond: ((thousand = 42) AND (tenthous = ANY ('{42,1042,2042,3042}'::integer[])))
 Index Searches: 1
 Buffers: shared hit=4
 Planning Time: 0.053 ms
 Execution Time: 0.018 ms
(8 rows)

-- Add more "tenthous" values, remove "LIMIT 2", select only indexed columns:
=# explain (analyze, costs off, timing off)
select thousand, tenthous from tenk1
 where thousand = 42 AND
 (tenthous = 42 or tenthous = 1042 or tenthous = 2042 or tenthous = 3042);
 QUERY PLAN

 Index Only Scan using tenk1_thous_tenthous on tenk1 (actual rows=4.00 loops=1)
 Index Cond: ((thousand = 42) AND (tenthous = ANY ('{42,1042,2042,3042}'::integer[])))
 Heap Fetches: 0
 Index Searches: 1
 Buffers: shared hit=3
 Planning Time: 0.049 ms
 Execution Time: 0.014 ms
(7 rows)

Overview
1.Skip scan: Overview

Summary of the feature, with real examples

2.Skip Scan runtime cost profile and the optimizer
 Adaptive/dynamic design philosophy

3.Postgres 18 OR transformation work
Summary of related/enabling optimizer work

4. MDAM style "general OR optimization"
Possible areas for future improvements

Improving OR optimization
Optimizer work added to Postgres 18 (discussed
in last section) only applicable to a few important
cases involving OR clauses

Can we generalize this idea, to make it work
with more complicate OR constructs?

- MDAM paper describes more sophisticated OR
transformations/optimizations

- This is outside my area of expertise. Help
wanted!

Advanced OR optimization
MDAM paper's final section, "General OR optimization", describes how this is
possible

- Duplicate elimination is a big problem with OR optimization in general (e.g.,
with unrelated optimization that converts a join into a UNION, to speed up
star schema queries)

- MDAM performs duplicate elimination "before any data is read" via
analysis, as opposed to actually eliminating duplicates (e.g., by using a TID
bitmap, or by eliminating duplicate TIDs)

- As with simple skip scan/OR transformation, reduces everything to a series
of disjoint "single value" accesses in index key space order, which behave
like one continuous index scan

- Unlike skip scan, each access can use different operators, etc

Picture in Postgres 18 with more complicated ORs is mixed, though we're
generally still forced to use BitmapOr plans...

=# explain (analyze, costs off, timing off)
select *
from
 sales_mdam_paper
where ((dept >= 1 and dept <= 3) or (dept > 4 and dept <= 8))
and sdate in ('1995-02-01', '1995-02-03')
and item_class = 5;
 QUERY PLAN
--
 Bitmap Heap Scan on sales_mdam_paper (actual rows=4200.00 loops=1)
 Recheck Cond: ...
 Filter: ...
 Heap Blocks: exact=617
 Buffers: shared hit=699
 -> BitmapOr ...
 Buffers: shared hit=82 -- total # of index buffer hits
 -> Bitmap Index Scan on mdam_idx (actual rows=1800.00 loops=1)
 Index Cond: ((dept >= 1) AND (dept <= 3) AND (sdate = ANY (...) AND (item_class = 5))
 Index Searches: 6
 Buffers: shared hit=35
 -> Bitmap Index Scan on mdam_idx (actual rows=2400.00 loops=1)
 Index Cond: ((dept > 4) AND (dept <= 8) AND (sdate = ANY (...) AND (item_class = 5))
 Index Searches: 8
 Buffers: shared hit=47
 Planning Time: 0.064 ms
 Execution Time: 1.054 ms
(17 rows)

Observations on BitmapOr
Postgres 18 plan

Some things work well here already!

- Planner can push down SAOP qual, as well as non-array scalar = condition as index
quals

- Each individual index scan does "range skip scan"

- No (or minimal) repeat reads of index leaf pages here

But (in this example) we spend more than twice as much time on heap access

- In Postgres 18, the problem is no longer the cost of scanning the index

- 617 heap buffer hits vs. only 82 index buffer hits

Trick here is to get an Index-only scan that offers the best of both worlds

- Earlier we saw an example where this happened, involving a simple OR list/clause

- Postgres 18 can already do all this with similar "dept between 1 and 8 and ..."
query, but this query isn't supposed to return "dept = 4" rows

=# explain (analyze, costs off, timing off)
select dept, sdate, store, item_class
from
 sales_mdam_paper
where ((dept >= 1 and dept <= 3) or (dept > 4 and dept <= 8))
and sdate in ('1995-02-01', '1995-02-03')
and item_class = 5;
 QUERY PLAN
--
 Index Only Scan using mdam_idx on sales_mdam_paper (actual rows=4200.00 loops=1)
 Index Cond: ((sdate = ANY ('{1995-02-01,1995-02-03}'::date[])) AND (item_class = 5))
 Filter: (((dept >= 1) AND (dept <= 3)) OR ((dept > 4) AND (dept <= 8)))
 Rows Removed by Filter: 55800
 Heap Fetches: 0
 Index Searches: 202
 Buffers: shared hit=1408
 Planning Time: 0.051 ms
 Execution Time: 6.718 ms
(9 rows)

Observations on "OR" Index-
only scan Postgres 18 plan

Index-only scan eliminates heap buffer hits, but is still significantly slower!

- Plan uses filter quals, leading to much less efficient skip scan/index
navigation due to "dept" column's inequalities not being used as index quals

- Using "dept between 1 and 8 and dept != 4 and ..." spelling of the
query has similar problems, also involving filter quals

Costing is inaccurate, which certainly doesn't help

- BitmapOr plan's total cost: 8059.63

- Index-only scan plan's total cost: 2676.37

- In reality, the BitmapOr scan plan is almost 7x faster

Postgres 18 effectively imposes a false choice between minimizing heap
accesses and efficient index scans -- MDAM paper gives us a way forward

Implementing MDAM style
"general OR optimization"

Currently, optimizer cannot perform OR transformation outside of the
confines of BitmapOr (barring simple OR list transformation case)

- My example query's Bitmap index scans perform disjoint accesses, but
the planner isn't aware of that

- My query deliberately made things easy, but it wouldn't be quite so easy
if (say) the pair of OR'd "dept" ranges overlapped

As we saw, MDAM OR optimization handles these not-so-easy cases

- Need to ensure that no duplicates can ever be returned

- We'll need to do the same thing to implement OR optimization; otherwise, it
doesn't seem of much practical use to real world queries

Conclusions
Skip Scan works by treating a composite index as a multidimensional
structure

Can be combined with ScalarArrayOp index conditions generated from "=
ANY(...)" and "IN(...)" constructs

OR transformation is therefore more important than ever

These techniques reduce index scan costs directly, and sometimes
indirectly enable query plans that perform fewer heap accesses by
allowing a scan to end early, or by avoiding use of filter quals

More advanced "MDAM style" OR transformations are feasible, and are
enabled by skip scan

