Sowme Application Development
~ Challenges with Postgres

What makes an accidental DBA/architect?

 Team solely responsible for an application or service
o Limited external support for operations and infrastructure

e Being first to admit you know some SOL

What makes an accidental DBA/architect?

XS

rvice

4
e Team solely responsible for an ap%li:fim\,

WS hs and infrastructure
o Being First to ae Oonow some SQL

W

e Limited external support

What makes application
development special?

Applications “hide” a database from users/systems

Web and local apps

- REST, GraphQL,

other APlIs

Micro, macro,
iIn-between services

Applications “hide” a database from users/systems

e Larger user base has more varied needs and goals

e Commitments are closer to “realtime” than “on time”
e Measurements & guarantees are holistic not specific
 System boundary is the application, not the database

e ...usually.

e

The vernacular: architecture without architects .

» '.

2 |

t

The vernacular: architecture without architecl:s

a“‘ "‘

e Follows practlcal need over theoretical rlgor

» Builds to suit conditions on the ground

The vernacular: architecture without architects

o Follows practical need over theoretical rigor
e Builds to suit conditions on the ground

o Considers place within the whole environment

The vernacular: architecture without architects

o Follows practical need over theoretical rigor
e Builds to suit conditions on the ground
o Considers place within the whole environment

e Varies within well-known or traditional idioms

Let’s build an application!

Shopping List

e Schema evolution tool

o Data access layer for application code

e That should be all we need, right?

Shopping List

e Schema evolution tool

o Data access layer for application code
e Connection pooling
 Monitoring/observability

e Backups

How do we interact with Postgres?

Implement Automalte
and evolve iInteractions
the schema with data

N/

Test, validate,
and refine
designs

What goes into our data-architectural decisions?

e Requirements from user research or otherwise
e Intuition about transient representations

e Fear or worse, fearlessness

Schema evolution, part |

o Extensions can save work — if we know about them
e Simple role permissions, usually
o Postgres’ modeling flexibility is a two-edged sword

o Data access tools may be less capable

Data access and manipulation

o Application developers go to great lengths to avoid SQL
 Need to run queries with dynamic criteria & select lists
 Want to avoid SOL injection risk

o Want to minimize boilerplate connection/cursor juggling

in of Data Access Layers

The Orig

DAL evolution: the beginning

e SOL statements in client code

 Hand-built dynamic SQL

» No connection/cursor management affordances
o Result extraction from cursor, ResultSet, etc

e No inherent organization

DAL evolution: object/relational mappers

e Hibernate, ActiveRecord
e Managed connections & cursors

e Results marshaled into classes
recapitulating data model

e Impedance mismatch

DAL evolution: data mappers and query builders

« MyBatis, MassiveJS o * Knexjs, SQLAlIchemy Core,

SOL statements j000, penkala, monstrous

prewritten and/or
generated

e Build SOL with relational-
algebraic functions

e Managed connections§g's. ®# * Managed connections &
& cursors 4 CUrSOrs

*‘
by = &
2 N
f'-"
| & wr
)T

w4
o
... B Y 4
‘N

bh "l

...¥

LAY

e Results marshaling €. e Results marshaling

DAL evolution: query runners

 pg-promise, slonik, aiosq|
e SQL statements in client code, hand-built dynamic SQL
e Managed cursors

e Results marshaling

e SOL organization, sometimes

....
,,,,,

DAL evolution: introspecting APl generators

e PostgREST, Postgraphile, Hasura

o Take the place of an application/service
e Build their own SQL

e Logic in functions and views

e May be extensible through plugins

DAL evolution: what's current?

e Query runners are a strict improvement on yoloSQL
e 0/RM problems are well understood

e Beyond that, It Depends

L et's do some testing!

Testing and transactions

e Transactions avoid side effects — when available
 Nontransactional tests must clean up or tolerate pollution

e Parallel tests can lock or violate each other's constraints

Testing Fflows and feedback loops

-/

Testing Fflows and feedback loops

(%
_ =
<

~

i

)\

F /

Z

Testing and data prerequisites

Rely on data from Maintain complete
earlier tests testing datasets

Pick one!

Bespoke test Orchestrate
setup code mini-fixtures

Let's debug some problems!

The best case

FRROR: null value in column
‘city” of relation "airport” violates
not-null constraint

DETAIL: Failing row contains
(DTW, Detroit Metropolitan, null,

null null. US, null. t null. null).

The worst case

Error: should be equal
+ expected - actual

< <

+

at Test.< S>

(File://test/airport/do-somethings:
287:5)

Following database execution flows

» Reproducing problems involves experimentation
e Single, file-based logging facility
e Functions are a logging boundary

 No profiler or session-activity collector

Following database execution flows

e pldebugger and friends
e Set up conditions locally

e Set breakpoints

e Construct function call or
DML to trigger execution

Gallant uses the typewriter very carefully.

Following database execution flows

e Spray RAISE WARNING

into everything plausible

e Reprise problem system
behavior and watch

Goofus bangs on the typewriter and breaks it.

But is it fast?

e Performance is good until it isn't
« EXPLAIN tells you what but not why

e Statistics are arcane

But is it fast?

e Shipping is the only way to find out what works
o Experimentation in production required

o Targeted band-aid fixes aren’t usually possible

| et's evolve our schemal

Schema evolution, part ll: guarantees

e Atomicity: transactional DDL

o [dempotence: CREATE OR REPLACE, where available
o Performance: concurrent builds and IF (NOT) EXISTS

Wait, what does ACCESS
EXCLUSIVE mean?

Schema evolution, part ll: execution

the inexorable march of time

Implement new Deploy new Correct old Retire old

structure + any application data behind structure,

compatibility behavior the scenes remove shims
shims

Let's recap!

All happy user bases are alike;
each unhappy user base Is
unhappy in its own way

— Leo ToLs’cog, probabta

Different Expectations

e Schema evolution at the speed of requirements changes
o System legibility at par with application code

o Gentle scale/performance curve

Different Interfaces

e Expanded system boundary
o Data access needs not well-served by SOL

e Higher levels of abstraction and automation

