
© 2025 Fujitsu Limited© 2025 Fujitsu Limited

A journey toward the columnar data store

2025年5月14日

PGConf.dev 2025

© 2025 Fujitsu Limited

About this Presentation

● Looking for people to work with us on this feature

Thread Title:
[WIP]Vertical Clustered Index (columnar store extension) - take2
-- We posted PoC patchs on this thread!

© 2025 Fujitsu Limited

Business data utilization

● EC: Optimize inventory based on sales data

● Financial Services: Transaction monitoring, fraud identification

● Manufacturing: Performance monitoring, anomaly detection, and
maintenance timing prediction

● Transportation: Optimize delivery routes and alert you of risks

Analyze and utilize data
for business improvements

Columnar store

© 2025 Fujitsu Limited

Columnar Store

● High-performance data retrieval

● I/O can be reduced by scanning only columns needed for data analysis

● All columns must be read in a row-oriented database

Purchase
_ID

Product Price Date

111 Ice
Cream

120 4/1

111 Cake 450 4/1

333 Chocolate 170 4/15

444 Ice
Cream

210 4/27

Purcha
se_ID

111

111

333

444

Product

Ice
Cream

Cake

Chocolat
e

Ice
Cream

Price

120

450

170

210

Date

4/1

4/1

4/15

4/27

Need to read all columns Scan only needed columns

EX. SELECT Product, Date FROM purchase_history;

© 2025 Fujitsu Limited

Columnar Store

● Efficient compression

● Long-term database can be effectively compressed.

Purchas
e_ID

111

111

333

444

Priduct

Ice
Cream

Cake

Ice
Cream

Ice
Cream

Price

120

120

120

210

Date

4/1

4/1

4/1

4/27

Compression ratio is high because same patterns are repeated

Purchas
e_ID

111x2

333

444

Product

Ice
Cream

Cake

Ice
Creamx2

Price

120x
3

210

Date

4/1x3

4/27

© 2025 Fujitsu Limited

PostgreSQL and columnar store

Using PostgreSQL with data generated in an application ...

● PostgreSQL is a row-oriented database

● For high-performance data retrieval

● Columnar Store

● in-memory

● Pioneers of columnar store extensions

● Citus (also available in Azure Cosmos DB for PostgreSQL)

● Hydra

● pg_mooncake

... but bad performance for updates

© 2025 Fujitsu Limited

Columnar Store

● Not optimized for INSERT/UPDATE/DELETE

● All columns must be read and updated

Purchase
_ID

Product Price Date

111 Ice
Cream

120 4/1

111 Cake 450 4/1

333 Chocolate 170 4/15

444 Ice
Cream

210 4/27

Purcha
se_ID

111

111

333

444

Product

Ice
Cream

Cake

Chocolat
e

Ice
Cream

Price

120

450

170

210

Date

4/1

4/1

4/15

4/27

Done at once Needs I/O per attributes

EX. INSERT INTO purchase_history VALUES (555, 'Apple', 210, ‘5/1');

555 Apple 210 5/1 555 Apple 210 5/1

© 2025 Fujitsu Limited

VCI

Real-time utilization of business data

Data analysis you want to perform:

● EC: Optimize inventory based on sales data

● Financial Services: Transaction monitoring, fraud
identification

● Manufacturing: Performance monitoring,
anomaly detection, and maintenance timing
prediction

● Transportation: Optimize delivery routes and
alert you of risks

in information analysis
With data generated in the

business
real-time utilization

Not slow down the updating

retrieval performance of
Columna Store

Data generated:

● EC: Insert purchase history and update
inventory data

● Financial Services: Insert Transaction History
and Balance Update

● Manufacturing: Insert sensor information by
hour

● transportation: updating location and dispatch
information

→ Update performance must not be slow

→ Need to be able to analyze with updated data

Analysis with the latest data

© 2025 Fujitsu Limited

Vertical Clustered Index (VCI) Proposal

● Columnar store function using column type index

● I am currently developing a prototype.

● VCI allows you to:

● Ability to aggregate data generated by OLTP in real time

● Faster data retrieval

● Current functional range of VCI

● Columnar Store

A) Conversion to column is asynchronous to avoid degradation of update performance

B) Refer to all data including update data using column format data and update difference
information

● data compression

● parallel scan

● In-memory

© 2025 Fujitsu Limited

How VCI Works

table

Write Optimized Storage
Read Optimized Storage

sync with the update
TID

TID

TID

An update is an asynchronous
row-to-column conversion

© 2025 Fujitsu Limited

1. INDEX Creation

● CREATE INDEX creates Read Optimized Storage for the specified row

Purcha
se_ID

Product Price Date

111 Ice
Cream

120 4/1

111 Cake 450 4/1

333 Chocola
te

170 4/15

444 Ice
Cream

210 4/27

CREATE INDEX vcindex ...

USING vci (Price, Date)…;

Price

120

450

170

210

ROS

Purchase History Table

Date

4/1

4/1

4/15

4/27

© 2025 Fujitsu Limited

2. Searching Tables

● Find ROS data when executing SELECT query

● the ability to quickly search only product lines

SELECT SUM(price) FROM purchase_history
 WHERE date > ‘2025-03-31’;

Price

120

450

170

210

ROS

Date

4/1

4/1

4/15

4/27

Ex. tally up sales of goods

© 2025 Fujitsu Limited

3. Updating Tables

● When INSERT occurs, store TID in Write Optimized Storage and ROS do
not update

● Only inserts into small data to WOS, so update performance impact is low

TID

5

WOS

Purcha
se_ID

Product Price Date

111 Ice
Cream

120 4/1

111 Cake 450 4/1

333 Chocola
te

170 4/15

444 Ice
Cream

210 4/27

555 Apple 198 5/1

TID

1

2

3

4

INSERT;

Price

120

450

170

210

ROS

Date

4/1

4/1

4/15

4/27

© 2025 Fujitsu Limited

4. SELECT after INSERT

● Temporarily convert WOS data to Local ROS

● Search for Local ROS and ROS

WOS

Price

198

Local ROS

Purcha
se_ID

Product Price Date

111 Ice
Cream

120 4/1

111 Cake 450 4/1

333 Chocola
te

170 4/15

444 Ice
Cream

210 4/27

555 Apple 198 5/1

TID

1

2

3

4

5

TID

5

SELECT SUM(price) FROM purchase_history
 WHERE date > ‘2025-03-31’; Conversion

Price

120

450

170

210

ROS

Date

4/1

4/1

4/15

4/27

Date

5/1

© 2025 Fujitsu Limited

5. ROS Update (Asynchronous)

BG Worker propagates changes to ROS after a while

WOS

TID

5

ID Mercha
ndise

Price Date of
purcha
se

111 Ice
Cream

120 4/1

111 Cake 450 4/1

333 Chocola
te

170 4/15

444 Ice
Cream

210 4/27

555 Apple 198 5/1

BG Worker

Price

120

450

170

210

198

ROS

Date

4/1

4/1

4/15

4/27

5/1

© 2025 Fujitsu Limited

performance measurement

● TPC-H scans 4.4 times faster

● NOTICE: It does not a measurement using posted patches

0 0.5 1 1.5 2

query1

query6

query14

VCI Scan vs Parallel scan (sec)

Parallel scan VCI Scan

© 2025 Fujitsu Limited

performance measurement

0.000

10,000.000

20,000.000

30,000.000

40,000.000

50,000.000

60,000.000

DBT3 Query Performances (msec)

Seq Scan VCI Parallel (1) VCI Parallel (24)

For Parallel query1 is
46 times faster

For Parallel
query19 is 11 times

faster

● DBT3 measurement (v 9.5)

© 2025 Fujitsu Limited

performance measurement

0

1000

2000

3000

10 20 30 40 50

Without VCI With VCI

(Multiplicity)

(TPS)

Results from our company measurement environment

In-Memory Columnar Update Throughput

● The performance of update processing is almost the same with or without
VCI

© 2025 Fujitsu Limited

Current VCI Implementation

● Using PostgreSQL mechanisms

● Index Access Method

● VCI uses PostgreSQL custom indexes

● Executor hook

● Use executor hook to replace with VCI plan

● Custom Scan

● Create custom plans for four types of VCI

© 2025 Fujitsu Limited

VCI Implementation

● proprietary implementation

● Custom implementation of parallel scanning with VCI

● This requires changes to PostgreSQL's standard implementation

● Implementing a new hook

● Implement hooks for Index and Relation operations

VCI custom Plan

Parallel
worker

Parallel
worker

Parallel
worker

Parallel
worker

Task queue

© 2025 Fujitsu Limited

Functions that are not implemented or lacking

Missing items

● Limited datatypes are supported

● Text search types and JSON types are not
supported

● Needs time for setup

● Time consuming to define indexes on existing
data

● pg_upgrade support

● Get VCI definitions

● Drop extensions once

● Install VCI and create indexes again after the
upgrade

These undeveloped features
We are looking for members to develop together!

Responding to Hook

● The following hooks are additionally implemented

● DELETE execution hook (amdelete)

● Remove columns from columns whenever VCI indexed tables
are updated or deleted, not when VACUUM is triggered

● Change when aminsert is called

● Change to call if columns not specified in CREATE INDEX
column field are UPDATE

© 2025 Fujitsu Limited© 2025 Fujitsu Limited

Thank you

	スライド 1: A journey toward the columnar data store
	スライド 2: About this Presentation
	スライド 3: Business data utilization
	スライド 4: Columnar Store
	スライド 5: Columnar Store
	スライド 6: PostgreSQL and columnar store
	スライド 7: Columnar Store
	スライド 8: Real-time utilization of business data
	スライド 9: Vertical Clustered Index (VCI) Proposal
	スライド 10: How VCI Works
	スライド 11: 1. INDEX Creation
	スライド 12: 2. Searching Tables
	スライド 13: 3. Updating Tables
	スライド 14: 4. SELECT after INSERT
	スライド 15: 5. ROS Update (Asynchronous)
	スライド 16: performance measurement
	スライド 17: performance measurement
	スライド 18: performance measurement
	スライド 19: Current VCI Implementation
	スライド 20: VCI Implementation
	スライド 21: Functions that are not implemented or lacking
	スライド 22: Thank you

