
Fraught 
Feedback
Trying and Failing to Implement Adaptive Behavior in Postgres

Melanie Plageman
Microsoft



Static configuration is 
insufficient in some cases



System 
changes and 
workload 
variation



Diverse access patterns

Insert-only audit table Hotly updated table Indexes



Mistakes or misbehavior



Adaptive behavior can 
address these cases



Adaptive algorithms

Feedback 
controllers

Predictive 
inference



Using them in vacuum

Feedback 
controllers -- 

dead tuple 
cleanup

Predictive 
inference -- 

freezing



Case Study 1 Pacing an ongoing 
autovacuum with 
feedback control



Vacuum must clean up dead tuples



Current Cost-based Vacuum Delay System

• Pauses vacuum when a threshold is hit
• Doesn’t consider:

• Vacuum work remaining
• Cost of not vacuuming
• System slack



What should it do?

Pace based on amount of work to do
See Robert’s presentation



Backlog

• Portion of the global backlog that a table represents
• Dead tuple generation rate for a table
• XID consumption rate for a table



Single Table Example
D

ea
d 

tu
pl

es

Time

New dead tuple generation

1,000,000 dead tuples

1,000 second deadline

1,000,000 dead tuples
-------------------------------
1,000 dead tuples/sec

1,000 sec deadline



Match the dead tuple generation rate
D

ea
d 

tu
pl

es

Time

New dead tuple generation

1,000,000 dead tuples

1,000 second deadline

Dead tuple removal

1,000 dead tuples/sec

1,000 removed tuples/sec



Calculating delay from rate

40 dead tuples per page

1 tuple/ms removal rate

40 ms delay
per page



Increased dead tuple generation rate
D

ea
d 

tu
pl

es

Time

New dead tuple generation

1,000,000 dead tuples

1,000 second deadline

Dead tuple removal



Match the increased dead rate
D

ea
d 

tu
pl

es

Time

New dead tuple generation

1,000,000 dead tuples

1,000 second deadline

Dead tuple removal

40 dead tuples per page
-------------------------------

2 tuple/ms removed

20 ms delay per page



Not removing as much as expected
D

ea
d 

tu
pl

es

Time

New dead tuple generation

1,000,000 dead tuples

Dead tuple removal

800,000 dead tuples
-------------------------------
500 seconds remaining

1,600 removed tuples/sec



Faster Incoming Rate and Inaccurate Dead 
Tuple Estimate

D
ea

d 
tu

pl
es

Time

New dead tuple generation

1,000,000 dead tuples

Dead tuple removal

Cumulative Updated Backlog
-----------------------------

Time Remaining

Removal Rate
Convert to Delay



Rate = Constant * Backlog
Proportional Linear Controller

D
ea

d 
tu

pl
es

Time

New dead tuple generation

1,000,000 dead tuples

Dead tuple removal

D
ea

d 
Tu

pl
es

Time

R
em

ov
al

 
R

at
e

Dead Tuples



Driving a car

Linear Superlinear

Less angle for smaller delta speed
More angle for larger delta speed

Small turn for small lane infringement
Huge turn for larger lane infringement 



Test Case

https://github.com/melanieplageman/postgres/tree/vacuum_dead_rate





Linear Controller Delay



Issues

• Must expand beyond single table
• Needs to be global because otherwise you would get stuck behind tables with little 

bloat

• Estimating the removal rate given vacuum’s phases
• Phase III is completely left out
• Line pointers set LP_DEAD by on-access pruning
• Index vacuuming phase not accounted for



Is this the right approach?

• What is our success evaluation criteria?
• Does more work when system most active
• IO throttling instead?



What about XID wraparound, though?

• Could do something similar with inserted tuples and freezing
• But likely need different evaluation criteria

• Inserted tuples not their own danger, only XID wraparound



Case Study 2 How to pace and 
predictively freeze 
tuples



Wraparound

Current XID

0 2^31 - 1



Freezing Timeline

4 billion200 million50 million
va

cu
um

_f
re

ez
e_

ta
bl

e_
ag

e

va
cu

um
_f

re
ez

e_
m

in
_a

ge

failsafe



Constant configuration even with diverse 
access patterns

Insert-only audit table Hotly updated table



Unmodified duration of vacuumed page. 
Relative to your workload’s data

2323588

LSN

Unmodified 
Durations

0 100000

Fr
eq

ue
nc

y
Oldest



Quiescence theory

Evicted



Will the page be modified again?

Evicted



Is this the last time the page will be 
vacuumed?

A = Autovacuum
A A A A A



How often can you tolerate useless freezing?

A = Autovacuum
A A A A A



Is the page young enough to stay 
unmodified for target freeze 
duration?



Is a given page young enough to stay 
unmodified for target freeze duration?

Unmodified Durations0 100000

Fr
eq

ue
nc

y/
Pr

ob
ab

ili
ty

Current unmodified 
duration

Target freeze duration

1 hour 1 hour, 40 
minutes



Is a given page young enough to stay 
unmodified for target freeze duration?

Unmodified Durations0 100000

Fr
eq

ue
nc

y/
Pr

ob
ab

ili
ty

Current unmodified 
duration

Target freeze duration

1 hour 1 hour, 40 
minutes



How likely is our specific page going to stay 
unmodified for target freeze duration

Unmodified Durations of 
Vacuumed Pages

0

Pr
ob

ab
ili

ty

Current unmodified 
duration

Target freeze duration

1 hour 1 hour, 40 
minutes



Results: All-visible Debt Low and Stable

https://github.com/melanieplageman/postgres/tree/adaptive_freeze_for_presentation



Many short autovacuums



Lower Total Time Spent Vacuuming



Insert-only workloads, data not modified



Missing data for pages not modified again

Unmodified Durations of 
Vacuumed Pages

0 100000

Fr
eq

ue
nc

y



Need to add LSNs of all-visible pages

2323588

LSN

LSNs of all-visible pages0 100000

Fr
eq

ue
nc

y



Building a distribution was complicated



High code complexity

• Lots of code (couldn’t come up with other great immediate uses)
• Didn’t work with failover or crash



Switch framing to all-visible pages scanning

A = Autovacuum
A A A A A A A AA A



Do we successfully freeze eagerly 
scanned all-visible pages?

• A chance to freeze all-visible pages but amortized
• All-visible pages more likely need freezing
• Only requires tracking information within one vacuum



Lessons Learned

• Sometimes attempts to simplify fail
• Define the problem better sooner



Future Directions

• Don’t do freezing in vacuum



Conclusion

ADAPTIVE 
ALGORITHMS WORK 

VERY WELL

BUT ARE VERY HARD BUT WE SHOULD 
THINK MORE ABOUT 

THEM

THANKS TO
ANDRES FREUND AND

ROBERT HAAS



Get your FREE socks 

@ registration

Got 3 minutes? 
We’d love your input 
on some of our
Postgres work


	Slide 1: Fraught Feedback
	Slide 2: Static configuration is insufficient in some cases
	Slide 3: System changes and workload variation
	Slide 4: Diverse access patterns
	Slide 5: Mistakes or misbehavior
	Slide 6: Adaptive behavior can address these cases
	Slide 7: Adaptive algorithms
	Slide 8: Using them in vacuum
	Slide 9: Case Study 1
	Slide 10: Vacuum must clean up dead tuples
	Slide 11: Current Cost-based Vacuum Delay System
	Slide 12: What should it do?
	Slide 13: Backlog
	Slide 14: Single Table Example
	Slide 15: Match the dead tuple generation rate
	Slide 16: Calculating delay from rate
	Slide 17: Increased dead tuple generation rate
	Slide 18: Match the increased dead rate
	Slide 19: Not removing as much as expected
	Slide 20: Faster Incoming Rate and Inaccurate Dead Tuple Estimate
	Slide 21: Rate = Constant * Backlog Proportional Linear Controller
	Slide 22: Driving a car
	Slide 23: Test Case
	Slide 24
	Slide 25: Linear Controller Delay
	Slide 26: Issues
	Slide 27: Is this the right approach?
	Slide 28: What about XID wraparound, though?
	Slide 29: Case Study 2
	Slide 30: Wraparound
	Slide 31: Freezing Timeline
	Slide 32: Constant configuration even with diverse access patterns
	Slide 33: Unmodified duration of vacuumed page. Relative to your workload’s data
	Slide 34: Quiescence theory
	Slide 35: Will the page be modified again?
	Slide 36: Is this the last time the page will be vacuumed?
	Slide 37: How often can you tolerate useless freezing?
	Slide 38: Is the page young enough to stay unmodified for target freeze duration?
	Slide 39: Is a given page young enough to stay unmodified for target freeze duration?
	Slide 40: Is a given page young enough to stay unmodified for target freeze duration?
	Slide 41: How likely is our specific page going to stay unmodified for target freeze duration
	Slide 42: Results: All-visible Debt Low and Stable
	Slide 43: Many short autovacuums
	Slide 44: Lower Total Time Spent Vacuuming
	Slide 45: Insert-only workloads, data not modified
	Slide 46: Missing data for pages not modified again
	Slide 47: Need to add LSNs of all-visible pages
	Slide 48: Building a distribution was complicated
	Slide 49: High code complexity
	Slide 50: Switch framing to all-visible pages scanning
	Slide 51: Do we successfully freeze eagerly scanned all-visible pages?
	Slide 52: Lessons Learned
	Slide 53: Future Directions
	Slide 54: Conclusion
	Slide 55

