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Static configuration is 
insufficient in some cases



System 
changes and 
workload 
variation



Diverse access patterns

Insert-only audit table Hotly updated table Indexes



Mistakes or misbehavior



Adaptive behavior can 
address these cases



Adaptive algorithms

Feedback 
controllers

Predictive 
inference



Using them in vacuum

Feedback 
controllers -- 

dead tuple 
cleanup

Predictive 
inference -- 

freezing



Case Study 1 Pacing an ongoing 
autovacuum with 
feedback control



Vacuum must clean up dead tuples



Current Cost-based Vacuum Delay System

• Pauses vacuum when a threshold is hit
• Doesn’t consider:

• Vacuum work remaining
• Cost of not vacuuming
• System slack



What should it do?

Pace based on amount of work to do
See Robert’s presentation



Backlog

• Portion of the global backlog that a table represents
• Dead tuple generation rate for a table
• XID consumption rate for a table



Single Table Example
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1,000,000 dead tuples

1,000 second deadline

1,000,000 dead tuples
-------------------------------
1,000 dead tuples/sec

1,000 sec deadline



Match the dead tuple generation rate
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New dead tuple generation

1,000,000 dead tuples

1,000 second deadline

Dead tuple removal

1,000 dead tuples/sec

1,000 removed tuples/sec



Calculating delay from rate

40 dead tuples per page

1 tuple/ms removal rate

40 ms delay
per page



Increased dead tuple generation rate
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1,000 second deadline

Dead tuple removal



Match the increased dead rate
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New dead tuple generation

1,000,000 dead tuples

1,000 second deadline

Dead tuple removal

40 dead tuples per page
-------------------------------

2 tuple/ms removed

20 ms delay per page



Not removing as much as expected
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1,000,000 dead tuples

Dead tuple removal

800,000 dead tuples
-------------------------------
500 seconds remaining

1,600 removed tuples/sec



Faster Incoming Rate and Inaccurate Dead 
Tuple Estimate
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Dead tuple removal

Cumulative Updated Backlog
-----------------------------

Time Remaining

Removal Rate
Convert to Delay



Rate = Constant * Backlog
Proportional Linear Controller
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Driving a car

Linear Superlinear

Less angle for smaller delta speed
More angle for larger delta speed

Small turn for small lane infringement
Huge turn for larger lane infringement 



Test Case

https://github.com/melanieplageman/postgres/tree/vacuum_dead_rate





Linear Controller Delay



Issues

• Must expand beyond single table
• Needs to be global because otherwise you would get stuck behind tables with little 

bloat

• Estimating the removal rate given vacuum’s phases
• Phase III is completely left out
• Line pointers set LP_DEAD by on-access pruning
• Index vacuuming phase not accounted for



Is this the right approach?

• What is our success evaluation criteria?
• Does more work when system most active
• IO throttling instead?



What about XID wraparound, though?

• Could do something similar with inserted tuples and freezing
• But likely need different evaluation criteria

• Inserted tuples not their own danger, only XID wraparound



Case Study 2 How to pace and 
predictively freeze 
tuples



Wraparound

Current XID

0 2^31 - 1



Freezing Timeline
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Constant configuration even with diverse 
access patterns

Insert-only audit table Hotly updated table



Unmodified duration of vacuumed page. 
Relative to your workload’s data
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Quiescence theory

Evicted



Will the page be modified again?

Evicted



Is this the last time the page will be 
vacuumed?

A = Autovacuum
A A A A A



How often can you tolerate useless freezing?

A = Autovacuum
A A A A A



Is the page young enough to stay 
unmodified for target freeze 
duration?



Is a given page young enough to stay 
unmodified for target freeze duration?
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Is a given page young enough to stay 
unmodified for target freeze duration?
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How likely is our specific page going to stay 
unmodified for target freeze duration

Unmodified Durations of 
Vacuumed Pages
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Target freeze duration

1 hour 1 hour, 40 
minutes



Results: All-visible Debt Low and Stable

https://github.com/melanieplageman/postgres/tree/adaptive_freeze_for_presentation



Many short autovacuums



Lower Total Time Spent Vacuuming



Insert-only workloads, data not modified



Missing data for pages not modified again

Unmodified Durations of 
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Need to add LSNs of all-visible pages
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Building a distribution was complicated



High code complexity

• Lots of code (couldn’t come up with other great immediate uses)
• Didn’t work with failover or crash



Switch framing to all-visible pages scanning

A = Autovacuum
A A A A A A A AA A



Do we successfully freeze eagerly 
scanned all-visible pages?

• A chance to freeze all-visible pages but amortized
• All-visible pages more likely need freezing
• Only requires tracking information within one vacuum



Lessons Learned

• Sometimes attempts to simplify fail
• Define the problem better sooner



Future Directions

• Don’t do freezing in vacuum



Conclusion

ADAPTIVE 
ALGORITHMS WORK 

VERY WELL

BUT ARE VERY HARD BUT WE SHOULD 
THINK MORE ABOUT 

THEM

THANKS TO
ANDRES FREUND AND

ROBERT HAAS



Get your FREE socks 

@ registration

Got 3 minutes? 
We’d love your input 
on some of our
Postgres work
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