Teaching Elephants To Tell
Time

Adventures in Distributing Snapshot Isolation



A complicated view...

Availability Zone 1 Availability Zone 2 Availability Zone 3

Bl Aurora Cluster

Shard Group
Distributed Transaction Routers

Aurora distributed storage




..of a familiar pattern

fdw

shards




..of a familiar pattern

PostgreSQL and
FDW can’t provide | fdw
snapshot isolation

shards




PostgreSQL creates snapshots as of NOW
with serialized local state




Now doesn’t work in distributed systems




Now doesn’t work in distributed systems

select

1. Create snapshot
sum(abalance) NOW...local TXs
from

pgbench_accounts;




Now doesn’t work in distributed systems

select
sum(abalance)
from
pgbench_accounts;

1. Create snapshot
NOW...Iocal TXs

2. Some later now,
different TXs




NOW doesn’t work in distributed systems

select

1. Create snapshot
sum(abalance) NOW...local TXs
from

pgbench_accounts;

2. Some later now,

3. Some later now,
different TXs

different TXs

No
consistent
snapshot

&

4. Some later now,
different TXs




PostgreSQL creates snapshots as of NOW
with seriakzed |local state



PostgreSQL creates snapshots as of NOW
with seriakzed |local state

Time-based MVCC



Simple building blocks

1.Establish snapshot on current
time..GetSnapshotData() irrelevant



Simple building blocks

1.Establish snapshot on current
time..GetSnapshotData() irrelevant

2.Pass snapshot time along with query
fragment to shards.



Simple building blocks

1.Establish snapshot on current
time..GetSnapshotData() irrelevant

2.Pass snapshot time along with query
fragment to shards.

3.Record commit time in clog



Simple building blocks

1.Establish snapshot on current
time..GetSnapshotData() irrelevant

2.Pass snapshot time along with query
fragment to shards.

3.Record commit time in clog

4. Visibility is commit time vs snapshot time



Instance Clock, C(t)

Distributed clocks??7??

> Clock Error Bound

Clock Error Bound Area

https://github.com/aws/clock-bound

\ 4

True Time (UTC), t



Some cool clock invariants

Events: {E,...T;...L.;} and {E;...T5...L3}

T, occurs before T, 2 E; < L,




Pseudo commit algorithm

doCommit()
{

// returns immediately with TIsn and HLC time of commit log record
pair{lsn,Time0fCommit} = flushLogToStorageAsync();

// returns when the 3AZ durability point >= the commit record
// Typically returns 1.5ms after commit time @ p50
waitForLsnDurable(lsn);

// returns when ClockBound.earliest > TimeOfCommit
// Typically returns immediately as (commit time - earliest) < 1lms @ p90
waitForeEarliest(TimeOfCommit);



Pseudo commit algorithm

doCommit()
{

// returns immediately with 1sn and HLC time of commit log record
pair{lsn,Time0fCommit} = flushLogToStorageAsync();

// returns when the 3Az durability point >= the commit record
// Typically returns 1.5ms after commit time @ p50
waitForLsnDurable(lsn);

// returns when ClockBound.earliest > TimeOfCommit
// Typically returns immediately as (commit time - earliest) < 1ms @ p90
waitForeEarliest(TimeOfCommit);

No blocking in waitForEarliest observed in cluster sustaining 5MM NOPM (HammerDb)

No blocking in 60 shard cluster performing 2MM commits / sec




That’s just the intro tlog compastion

Snapshot horizon gossip for vacuum control

Committing status for long-fork anomaly prevention



