
Teaching Elephants To Tell
Time

Adventures in Distributing Snapshot Isolation

A complicated view…

…of a familiar pattern

shards

fdw

…of a familiar pattern

shards

fdw
PostgreSQL and
FDW can’t provide
snapshot isolation

PostgreSQL creates snapshots as of NOW
with serialized local state

Now doesn’t work in distributed systems

Now doesn’t work in distributed systems
select

sum(abalance)
from
pgbench_accounts;

1. Create snapshot
NOW…local TXs

Now doesn’t work in distributed systems
select

sum(abalance)
from
pgbench_accounts;

1. Create snapshot
NOW…local TXs

2. Some later now,
different TXs

NOW doesn’t work in distributed systems
select

sum(abalance)
from
pgbench_accounts;

1. Create snapshot
NOW…local TXs

2. Some later now,
different TXs

3. Some later now,
different TXs

4. Some later now,
different TXsNo

consistent
snapshot
😕

PostgreSQL creates snapshots as of NOW
with serialized local state

THEN

NO

PostgreSQL creates snapshots as of NOW
with serialized local state

THEN

NO

Time-based MVCC

Simple building blocks

1.Establish snapshot on current
time…GetSnapshotData() irrelevant

Simple building blocks

1.Establish snapshot on current
time…GetSnapshotData() irrelevant

2.Pass snapshot time along with query
fragment to shards.

Simple building blocks

1.Establish snapshot on current
time…GetSnapshotData() irrelevant

2.Pass snapshot time along with query
fragment to shards.

3.Record commit time in clog

Simple building blocks

1.Establish snapshot on current
time…GetSnapshotData() irrelevant

2.Pass snapshot time along with query
fragment to shards.

3.Record commit time in clog

4. Visibility is commit time vs snapshot time

Distributed clocks????

https://github.com/aws/clock-bound

Some cool clock invariants

Events: {E1…T1…L1} and {E3…T3…L3}

T1 occurs before T3 à E1 < L3

Pseudo commit algorithm

doCommit()
{
 // returns immediately with lsn and HLC time of commit log record
 pair{lsn,TimeOfCommit} = flushLogToStorageAsync();

 // returns when the 3AZ durability point >= the commit record
 // Typically returns 1.5ms after commit time @ p50
 waitForLsnDurable(lsn);

 // returns when ClockBound.earliest > TimeOfCommit
 // Typically returns immediately as (commit time – earliest) < 1ms @ p90
 waitForEarliest(TimeOfCommit);
}

Pseudo commit algorithm

doCommit()
{
 // returns immediately with lsn and HLC time of commit log record
 pair{lsn,TimeOfCommit} = flushLogToStorageAsync();

 // returns when the 3AZ durability point >= the commit record
 // Typically returns 1.5ms after commit time @ p50
 waitForLsnDurable(lsn);

 // returns when ClockBound.earliest > TimeOfCommit
 // Typically returns immediately as (commit time – earliest) < 1ms @ p90
 waitForEarliest(TimeOfCommit);
}

No blocking in waitForEarliest observed in cluster sustaining 5MM NOPM (HammerDb)

No blocking in 60 shard cluster performing 2MM commits / sec

That’s just the intro

Hooks that make this an

extension

Distributed commit coordinator (2PC)

Non-blocking 2PC algorithm

Committing status for long-fork anomaly prevention

Snapshot horizon gossip for vacuum control

Clog compaction

