
Teaching Elephants To Tell 
Time

Adventures in Distributing Snapshot Isolation 
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Simple building blocks

1.Establish snapshot on current 
time…GetSnapshotData() irrelevant

2.Pass snapshot time along with query 
fragment to shards.

3.Record commit time in clog

4. Visibility is commit time vs snapshot time



Distributed clocks????

https://github.com/aws/clock-bound



Some cool clock invariants

Events: {E1…T1…L1} and {E3…T3…L3} 

T1 occurs before T3 à E1 < L3



Pseudo commit algorithm

doCommit()
{
  // returns immediately with lsn and HLC time of commit log record 
 pair{lsn,TimeOfCommit} = flushLogToStorageAsync();

 // returns when the 3AZ durability point >= the commit record
 // Typically returns 1.5ms after commit time @ p50
 waitForLsnDurable(lsn);

 // returns when ClockBound.earliest > TimeOfCommit
 // Typically returns immediately as (commit time – earliest) < 1ms @ p90
 waitForEarliest(TimeOfCommit);
}
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No blocking in waitForEarliest observed in cluster sustaining 5MM NOPM (HammerDb)

No blocking in 60 shard cluster performing 2MM commits / sec



That’s just the intro

Hooks that make this an 

extension

Distributed commit coordinator (2PC)

Non-blocking 2PC algorithm

Committing status for long-fork anomaly prevention 

Snapshot horizon gossip for vacuum control

Clog compaction


