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Introduction to Feature Engineering

Why PostgreSQL?

● Scale:  Handles large datasets eiciently

● Declarative speed: Writing SELECT … GROUP BY … is faster to 

prototype than looping in code.

● Production‑ready: Integration with production databases

Transform raw data into meaningful features to improve ML model 

performance.



Key/Powerful PostgreSQL Features

Techniques for Preprocessing

● Rolling/Lag features: compute previous or next values in a series.

● Aggregations & grouping: summarize data at various granularities (counts, averages).

● Missing‑value handling: coalesce, conditional imputation, or filtering out nulls.

● One‑hot encoding: use CASE WHEN … THEN 1 ELSE 0 END to turn categories into 

numeric flags.

● Window Functions (ROW_NUMBER, LAG, LEAD) for rolling and comparative features.

● Common Table Expressions (CTEs) for breaking complex logic into readable steps.

● JSON/JSONB support to parse and extract nested data.

● Array & string functions to manipulate lists and text within SQL.



Practical Example: Window Functions

This query allows you to analyze month-to-month trends, making PostgreSQL a 
powerful tool for time-series and analytical queries.

SELECT 
   month,
   revenue,
   LAG(revenue) OVER (ORDER BY month) AS previous_month_revenue,
   LEAD(revenue) OVER (ORDER BY month) AS next_month_revenue
FROM sales;



Practical Example: JSON & Arrays

This query pulls a JSON array of preferences, unnests it into rows, and counts how 
many are labeled “active.”

SELECT
  data->>'user_preferences' AS prefs_json,
  jsonb_array_elements_text(prefs_json) AS preference,
  COUNT(*) FILTER (WHERE preference = 'active') AS active_pref_count
FROM user_events
GROUP BY prefs_json;



Best Practices
Key tips to keep SQL transformations eicient:

● Index key columns used in WHERE, JOIN, and PARTITION BY.

● Use materialized views for rarely rarely changing aggregates.

● Batch vs. on‑the‑fly: decide whether to compute features in bulk 

during o‑hours or on demand at query time.



CONCLUSION
Feature engineering in SQL unlocks eicient, production-ready ML 

pipelines.

● PostgreSQL’s advanced SQL features streamline preprocessing.

● A good balance would be to combine manual SQL control with 

orchestration tools like Airflow



RESOURCES
● hps://www.postgresql.org/docs/current/functions-window.html

● hps://www.postgresql.org/docs/current/queries-with.html

● hps://www.postgresql.org/docs/current/functions-json.html

● hps://www.postgresql.org/docs/current/functions-array.html

● hps://www.postgresql.org/docs/current/functions-conditional.html

● hps://www.postgresql.org/docs/current/rules-materializedviews.html

https://www.postgresql.org/docs/current/functions-window.html
https://www.postgresql.org/docs/current/queries-with.html
https://www.postgresql.org/docs/current/functions-json.html
https://www.postgresql.org/docs/current/functions-array.html
https://www.postgresql.org/docs/current/functions-conditional.html

