
FEATURE ENGINEERING
WITH SQL

Preparing ML Data in
PostgreSQL

Chioma A. Onyekpere

OUTLINE

INTRODUCTION

01 Why SQL for Feature
Engineering? 02

KEY POSTGRESQL
FEATURE
SQL Techniques for
Preprocessing

03
PRACTICAL
EXAMPLES

04
PERFORMANCE
& BEST
PRACTICES

Introduction to Feature Engineering

Why PostgreSQL?

● Scale: Handles large datasets eiciently

● Declarative speed: Writing SELECT … GROUP BY … is faster to

prototype than looping in code.

● Production‑ready: Integration with production databases

Transform raw data into meaningful features to improve ML model

performance.

Key/Powerful PostgreSQL Features

Techniques for Preprocessing

● Rolling/Lag features: compute previous or next values in a series.

● Aggregations & grouping: summarize data at various granularities (counts, averages).

● Missing‑value handling: coalesce, conditional imputation, or filtering out nulls.

● One‑hot encoding: use CASE WHEN … THEN 1 ELSE 0 END to turn categories into

numeric flags.

● Window Functions (ROW_NUMBER, LAG, LEAD) for rolling and comparative features.

● Common Table Expressions (CTEs) for breaking complex logic into readable steps.

● JSON/JSONB support to parse and extract nested data.

● Array & string functions to manipulate lists and text within SQL.

Practical Example: Window Functions

This query allows you to analyze month-to-month trends, making PostgreSQL a
powerful tool for time-series and analytical queries.

SELECT
 month,
 revenue,
 LAG(revenue) OVER (ORDER BY month) AS previous_month_revenue,
 LEAD(revenue) OVER (ORDER BY month) AS next_month_revenue
FROM sales;

Practical Example: JSON & Arrays

This query pulls a JSON array of preferences, unnests it into rows, and counts how
many are labeled “active.”

SELECT
 data->>'user_preferences' AS prefs_json,
 jsonb_array_elements_text(prefs_json) AS preference,
 COUNT(*) FILTER (WHERE preference = 'active') AS active_pref_count
FROM user_events
GROUP BY prefs_json;

Best Practices
Key tips to keep SQL transformations eicient:

● Index key columns used in WHERE, JOIN, and PARTITION BY.

● Use materialized views for rarely rarely changing aggregates.

● Batch vs. on‑the‑fly: decide whether to compute features in bulk

during o‑hours or on demand at query time.

CONCLUSION
Feature engineering in SQL unlocks eicient, production-ready ML

pipelines.

● PostgreSQL’s advanced SQL features streamline preprocessing.

● A good balance would be to combine manual SQL control with

orchestration tools like Airflow

RESOURCES
● hps://www.postgresql.org/docs/current/functions-window.html

● hps://www.postgresql.org/docs/current/queries-with.html

● hps://www.postgresql.org/docs/current/functions-json.html

● hps://www.postgresql.org/docs/current/functions-array.html

● hps://www.postgresql.org/docs/current/functions-conditional.html

● hps://www.postgresql.org/docs/current/rules-materializedviews.html

https://www.postgresql.org/docs/current/functions-window.html
https://www.postgresql.org/docs/current/queries-with.html
https://www.postgresql.org/docs/current/functions-json.html
https://www.postgresql.org/docs/current/functions-array.html
https://www.postgresql.org/docs/current/functions-conditional.html

